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Charles Fox Tom Duckett Arthur Richards

On behalf of the Organising and Advisory Committee
we take great pleasure in welcoming students, researchers
and experts in Robotics to UKRAS20, the 3rd UK-RAS
Conference for PhD Students and Early-Career Researchers,
organised by the EPSRC UK-RAS network in collaboration
with the AgriFoRwArdS and FARSCOPE Centres for Doctoral
Training.

I. CONFERENCE AIMS

The conference is specifically for PhD students and early-
career robotics researchers of the UK-RAS Network and
will foster progress in the field of robotics research at what
promises to be a very comprehensive and exciting meeting.
The aim of the UKRAS20 conference is to promote quality re-
search, networking, and community building for PhD students
and practitioners at the frontier of science and technology
in intelligent robots and systems, by discussing the latest
advancements in this fast growing and exciting field.

II. TOPICS

This year’s theme is ‘Robots into the Real World’, exploring
how robotics can make a positive difference to societal chal-
lenges, from fundamental enabling technologies to real-world
applications, such as working in challenging and extreme envi-
ronments; enabling healthy / independent living; ensuring safe,
efficient transport; developing next-generation manufacturing;
feeding a growing population and ensuring a safe environment
for the future. Presentations have been grouped into three
sessions within this theme:

Artificial Intelligence and Robotics. Keynote speaker Ing-
mar Posner (Oxford) will discuss Robots Thinking Fast and
Slow. The oral presentation topics are Enhancing Unsuper-
vised Natural Language Grounding through Explicit Teaching
[1], Enhancing Unsupervised Natural Language Grounding
through Explicit Teaching [2], An incremental learning ap-
proach for physical Human-Robot Collaboration [3], Plastic
’personalities’ for effective field swarm [4], and Reliability-
Aware Multi-UAV Coverage Path Planning Using Integer
Linear Programming [5].

Field and Service Robotics. Keynote speaker Fumiya Iida
(Cambridge) will discuss Turning Soft Materials into Intelli-
gent Machines. The oral presentation topics are Towards Inten-
tion Recognition for Human-Interacting Agricultural Robots
[6], Feasibility Study of In-Field Phenotypic Trait Extraction

Charles Fox is Programme Chair, UKRAS20, University of Lincoln, UK.
Tom Duckett is General Chair, UKRAS202, University of Lincoln, UK. Arthur
Richards is Technical Chair, UKRAS20, University of Bristol, and UK-RAS
Network.

for Robotic Soft-Fruit Operations [7], Enabling Deep Person-
alisation for a Heterogeneous Ambient Assisted Living Land-
scape [8], Automated Topological Mapping for Agricultural
Robots [9], and Trajectory Tracking and Control of Multiple
Robot Arms on a Free-Floating Spacecraft for Debris Removal
[10].

Novel and Emerging Robotics Technologies. Keynote
speaker Adam Stokes (Edinburgh) will discuss Biologically
Inspired Robotic Systems for Extreme Environments. The oral
presentation topics are Biologically Inspired Robotic Systems
for Extreme Environments [11], Analysis of two wheeled robot
morphology for a slope environment [12], The Goods and
Bads in Dyadic Co-Manipulation: Identifying Conflict-Driven
Interaction Behaviours in Human-Human Collaboration [13],
Expression of Grounded Affect in a Hexapod Robot [14], and
Optimising Soft Fin Ray Robotic Fingers using Finite Element
Analysis to Reduce Object Slippage [15].

These sessions and topics present an overview of current
areas of interest across the UK robotics community in 2020.

III. SELECTION PROCESS

Accepted authors from previous UKRAS conferences were
invited to review, with additional reviewers from the host
institution, University of Lincoln, having one or more previous
publications in TAROS, IROS or ICRA. Reviewers were free
to delegate reviews to any others having publications in these
venues. All submissions have been reviewed by two or three
reviewers, scoring between 3 (strong accept) and -3 (strong
reject), with 0 as borderline. The conference aims to be
inclusive so all papers with average scores of 0 or greater
have been accepted. Additional reviewers were invited where
reviewer opinions differed strongly between accept and reject.
Reviewers were instructed that papers should contain some
novelty, such as presenting new results and/or new contexual-
isations of previous results, such as reviewing previous work
to present one’s whole PhD or research project to the UK
community as a whole. Reviewers from the host institution
were not assigned to papers from the host institution. All
other review assignment is random, as a conference aim is for
the whole UK robotics community to understand each others
work in a single track event. The 15 highest scoring papers
were selected for oral presentation, subject to a limit of no
more than one oral presentation per author, and excluding
four papers authored by the General Chair and Programme
Chair ([16], [17], [18], [19]). Keynotes were invited at the
discretion of the programme committee. Awards will be given
to the best paper and poster presentation as selected by a
committee comprising members of the UK-RAS network and
senior programme committee members of UKRAS20.
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IV. CONFERENCE STATISTICS

67 submissions were received, of which 15 were accepted as
oral presentations and 41 as poster presentations. (Acceptance
rate 88%). Accepted papers are from 22 UK universities, with
ratios shown in fig. 1. 44% of papers have two reviews, and
56% have three or more reviews. There were 45 participating
reviewers from 28 UK universities whose affiliations are
shown in fig. 2. The UKRAS20 host institution, University
of Lincoln, and previous year’s UKRAS19 host institution,
University of Loughborough, are both highly represented in
both presentations and reviewers.

Fig. 1: Affiliations of accepted paper authors

Fig. 2: Affiliations of reviewers

V. REVIEWERS

Paul Baxter, Nicola Bellotto, Jordan Bird, Fanta Ca-
mara, Grzegorz Cielniak, Heriberto Cuayahuitl, Gautham Das,
Daniel DeBarrie, Johann Dichtl, Khaled Elgeneidy, Yinfeng
Fang, Diego Faria, Manuel Fernandez-Carmona, Joo Filipe
Ferreira, Khaled Goher, Laura Justham, Marc Hanheide, Chris-
tos Kouppas, Weeding Li, Honghai Liu, Neils Lohse, Ahmad
Lotfi, Mufti Mahmud, Luis J. Manso, Sarah Mghames, Alan
Millard, Ben Mitchinson, Hector A. Montes, Harit Pandya,
Simon Parsons, Martin Pearson, Riccardo Polvera, Mithun
Poozhiyil, David Portugal, Mini Saaj, Baris Serhan, Elizabeth
Sklar, Aravinda Srinivasan, Cuebong Wong, Erfu Yang, Shi-
gang Yue, Tsvetan Zhivkov, Melanie Zimmer.

VI. LOCAL ARRANGEMENTS

Due to the 2020 COVID-19 pandemic, UKRAS20 is being
held remotely as a teleconference. We ask all participants to
study and respect teleconference etiquette. In particular this
means that as with a physical conference, participants should
devote their full day exclusively to attending the presentation
and networking sessions. It is rude to perform other work on
computers at the same time. Teleconferencing can deliver in-
formation and build communities as well as physical meetings
if suitable etiquette is applied, and that it also reduces carbon
emissions, fuel use, travel times, and attendance costs.
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Enhancing Unsupervised Natural Language
Grounding through Explicit Teaching

Oliver Roesler
Artificial Intelligence Lab
Vrije Universiteit Brussel

Brussels, Belgium
oliver@roesler.co.uk

Abstract—In this paper, a grounding framework is proposed
that combines unsupervised and supervised grounding by extend-
ing an unsupervised grounding model with a mechanism to learn
from explicit human teaching. To investigate whether explicit
teaching improves the sample efficiency of the original model,
both models are evaluated through an interaction experiment
between a human tutor and a robot in which synonymous shape,
color, and action words are grounded through geometric object
characteristics, color histograms, and kinematic joint features.
The results show that explicit teaching improves the sample
efficiency of the unsupervised baseline model.

Index Terms—language grounding, cross-situational learning,
sample efficiency, human-robot interaction

I. INTRODUCTION

The need for robots that are able to understand natural lan-
guage instructions is growing due to an increasing number of
service robots that are employed in human-centered environ-
ments. To this end, connections between words and percepts
need to be created through grounding because language only
has meaning, if it is linked to the physical world [1].
Previous studies that investigated grounding employed either
unsupervised [2]–[4] or supervised [5], [6] approaches. The
former have the advantage that no human tutor is required for
grounding, however, they require a large number of situations
to learn the correct grounding, i.e. they are less sample
efficient, and are often also less accurate than supervised
approaches. In comparison, the latter are often more accurate
and can already learn the correct mappings from a very small
number of situations, however, they do not work in the absence
of a human tutor.
In this paper, both approaches are combined by extending
a recently proposed unsupervised cross-situational learning
based grounding framework [7], [8] to learn from explicit
human teaching, if available. The main aim is to investigate
whether this extension increases the model’s sample efficiency,
i.e. whether it reduces the number of interactions required until
the model obtains the correct mappings between words and
percepts.
The rest of this paper is structured as follows: Section (II)
describes the extended grounding framework. The experimen-
tal design and obtained results are described in Sections (III
and IV). Finally, Section (V) concludes the paper.

II. SYSTEM OVERVIEW

The used grounding system consists of the following parts:

1) 3D object segmentation system, which employs a
model based 3D point cloud segmentation approach [9]
to segment objects into point clouds. The shapes and col-
ors of objects are represented through Viewpoint Feature
Histogram [10] descriptors, which represent the object
geometries taking into consideration the viewpoints,
while ignoring scale variances, and color histograms.

2) Action recording system, which records the vertical
position of the robot’s torso, the angles of the arm
flex and wrist roll joints, the velocity of the robot’s
base and the binary state of the gripper, i.e. open or
closed, during action execution. The recorded data is
then combined into an action feature vector, which
represents the change of the recorded characteristics
between the beginning and the end of an action.

3) Percept clustering component, which converts percepts
to abstract representations through clustering to enable
the CSL algorithm to use them to ground encountered
words as proposed by [11]. The used clustering algo-
rithm is DBSCAN [12] because it does not require the
number of clusters to be specified in advance, which is
important since it cannot be assumed that the number
of percepts is known in advance. Cluster numbers were
calculated prior to grounding so that they could be
provided to the CSL algorithm. Shape, color, and action
percepts achieved mean adjusted rand scores [13] of
0.84, 1.0, and 0.99, respectively.

4) Language grounding component, which uses an ex-
tended version of the cross-situational learning based
grounding algorithm proposed by [8]. The original
grounding algorithm grounds words and phrases through
cluster numbers of percepts in an unsupervised manner
without being able to take into account any teaching
or feedback by a human tutor. Thus, in this study an
extension is proposed that provides a mechanism to learn
mappings from explicit teaching. The new mechanism
uses similar to the original one cross-situational learning
to determine the correct mappings, however, it requires
the tutor to artificially create a situation where only
one percept occurs twice and only one word is given

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020
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to the robot, which should be grounded through that
percept (Section III). When a new mapping has been
obtained through explicit teaching, it is added to the set
of previously obtained mappings, which also includes
mappings obtained through the unsupervised grounding
algorithm during regular situations.

III. EXPERIMENTAL SETUP

During the experiment a human tutor and HSR robot [14]
interact in front of a table with one or two objects on top of it.
Interactions can be of two types. Either the human tutor asks
the robot to perform an action on the object or the tutor tries to
teach the robot the correct mapping for a shape, color, or action
word. The former interactions use the following procedure.

1) The tutor places an object on the table and the robot
determines the corresponding shape and color percepts.

2) The human tutor provides an instruction to the robot.
3) The human tutor teleoperates the robot to execute the

action provided through the instruction and the robot
determines a corresponding action percept.

4) The robot employs clustering to convert all encountered
percepts to abstract representations.

5) Words are grounded through obtained cluster numbers
by the CSL based grounding algorithm.

In contrast, situations in which the human tutor tries to teach
the robot a specific mapping follow the following procedure.

1) The human tutor places two objects, which have either
the same shape or color, on the table and the robot
determines the corresponding percepts, if the tutor tries
to teach the correct mapping for a shape or color word.
Otherwise, to teach an action word, the human tutor
places two objects on the table that have different shapes
and colors and executes the same action for both of them
so that only the action percept occurs twice.

2) The human tutor provides one single word, which refers
to the percept that occurs twice.

3) The robot creates a corresponding mapping and adds it
to the set of previously obtained mappings.

To create the 2,500 situations used in this study without
having to perform 2,500 interactions, the following procedure
is applied. First, a total of 125 interactions are performed
to record perceptual information for all combinations of em-
ployed shapes, colors, and actions, while skipping the last
two steps of the interaction procedure, i.e. steps 4 and 5.
Afterwards, all possible unique sentences are obtained by
creating all possible combinations of shape, color, and action
words. Finally, each sentence is randomly assigned one shape,
color, and action percept that correspond to the words in the
sentences, leading to overall 2,500 situations.

Each sentence has the following structure: “action the color
shape”, where action, color, and shape are replaced by one
of their corresponding words. Each action and color can be
referred to by two different words, e.g. the color green can be
referred to by “green” or “greenish”, while each shape has five
corresponding words, e.g. “latte”, “milk”, “milk tea”, “coffee”
or “espresso” for cup.

Fig. 1. Grounding results showing means and standard deviations of correct
and false mappings over all 2,500 situations encountered by the robot for 10
different sequences. The dotted lines represent the results, when the tutor
teaches the robot a correct mapping after on average every 9 situations,
while the continuous lines represent the results, when no explicit teaching
is provided.

IV. RESULTS AND DISCUSSION

The results show that teaching increases the convergence
towards the correct mappings (Figure 1). If no teaching is
provided, the algorithm requires about 850 situations to ground
all words correctly for all 10 different sequences, while it only
requires about 350 situations, when the human tutor explicitly
teaches one mapping to the robot after on average every
9 situations. Before obtaining all correct mappings teaching
also leads to a slightly higher number of correctly grounded
words. Even after all words are correctly grounded, the number
of false mappings oscillates around 2, when no teaching is
provided, because the algorithm allows words to be grounded
through several percepts to handle homonyms. In contrast, no
false mappings are obtained in case of the extended model.
If the human tutor teaches all 45 words at the beginning of
the experiment, the model learns all words after 45 situations,
assuming that all encountered percepts are correctly clustered.
While teaching all words explicitly is possible for the small
number of words used in this scenario, it would not be feasible
for a much larger number of words, which illustrates the
importance of the unsupervised grounding mechanism.

V. CONCLUSIONS AND FUTURE WORK

An unsupervised grounding model was extended to allow
it to benefit from explicit teaching by a human tutor. The
proposed model was evaluated through a human-robot
interaction experiment and compared to the original model
that does not allow explicit teaching. The results showed
that with teaching the model grounds all words on average
about 2.5 times faster than without teaching. In future work,
the model will be evaluated for longer and more complex
sentences that contain a larger number of words. Furthermore,
the influence of wrong teaching, i.e. when the tutor on purpose
or by accident provides a wrong word during teaching, will
be investigated. Finally, the model will be extended to allow
human feedback for already obtained groundings.
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Abstract— The allocation of tasks to members of a team
is a well-studied problem in robotics. Applying market-based
mechanisms, particularly auctions, is a popular solution. We
focus on evaluating the performance of the team when execut-
ing the tasks that have been allocated. The work presented
here examines the impact of one such factor, namely task
duration. Building on prior work, a new bidding strategy and
performance metric are introduced. Experimental results are
presented showing that there are statistically significant dif-
ferences in both time and distance-based performance metrics
when tasks have zero vs greater-than-zero duration.

I. INTRODUCTION
Assigning a set of tasks within a team of robots is known

as the multi-robot task allocation (MRTA) problem. As the
number of tasks and size of the robot team increases, the
number of possible allocations rises at an exponential rate.
The complexity further increases when factors are added,
such as a dynamic environment that changes over time,
a heterogeneous team of robots with various capabilities
or tasks that have prerequisites which must be satisfied
before they can be executed. Finding the optimal solution
to an MRTA problem is known to be NP-hard [1], [2], so
a popular family of strategies takes a market- or auction-
based approach. Auctions are useful because they can dis-
tribute workload amongst team members whilst reflecting
preferences of individuals [2], [3], [4]. A local optimum is
determined by each robot (labelled bidder) and these optima
are collectively reconciled by an auctioneer. The team can
operate in real-time and respond dynamically to changes in
the task landscape, such as the arrival of new tasks to be
addressed while already executing tasks previously allocated.

The work presented here extends our prior work in which
we demonstrated the importance of mission execution and
weighing various performance metrics when comparing task
allocation mechanisms [5], [4]. Here we assess the impact of
task duration. Our contributions include: (a) a new method-
ology for robots to bid on tasks with varying durations; (b) a
new metric that attempts to capture aspects of task duration;
(c) results of experiments conducted both in simulation and
on physical robots across a landscape of mission parameters;
and (d) statistical analysis of results to highlight the impact
on performance metrics when task duration varies.

This work was conducted while the first author was a masters student in
the Dept of Informatics at King’s College London, UK. The second author
was a professor in the same department and project supervisor.

II. BACKGROUND
Koenig et al. [2] proposed sequential single-item (SSI) auc-

tions in which several tasks are announced to team members
at once; each robot responds with a bid representing a cost
to the robot for executing the task, e.g. the distance the robot
must travel to reach the task location. An auctioneer identifies
the winner as the robot with the smallest bid. The auction
repeats in rounds until all tasks have been allocated. SSI
combines the strength of combinatorial [6] (bidding on bun-
dles of tasks) and parallel single-item (PSI) [2] (allocating
all tasks in a single round) auctions. SSI has been a popular
choice for MRTA and several variants have been studied,
for example tasks with temporal constraints [3], tasks with
precedence constraints [7], [8], and tasks with pickup-and-
delivery constraints [9]. Our prior work has focused on
empirical analysis of auction mechanisms [5], comparing
SSI, PSI and a baseline Round Robin (RR) (first come, first
served) in experiments conducted on physical and simulated
robots. We have defined a comprehensive set of performance
metrics [10] and learned a model for selecting an appropriate
mechanism given mission parameters [11].

III. APPROACH
We assess the impact of varying task durations on multi-

robot team performance by executing missions on physical
robots and in simulation, and then analysing differences in
performance metrics. Missions are defined across a landscape
of parameters [1], [12] which distinguish characteristics
of tasks, robots and the environment: single robot (SR)
vs multi-robot (MR)—SR tasks can be completed by one
robot, whereas MR tasks require the cooperation of multiple
robots; independent (IT) vs constrained (CT)—IT tasks can
be executed in any order, whereas CT tasks are dependent
on others due to factors such as precedence order; static (SA)
vs dynamic (DA)—SA tasks are known before a mission
starts and can be allocated before any execution, whereas DA
tasks arrive dynamically and are allocated during execution
of other tasks.

Here, we introduce a task duration parameter, i.e. the
time it takes to execute a task: instantaneous (ID) vs ex-
tended (XD)—ID tasks take no time to execute (i.e., 0
seconds), whereas XD task length is > 0. We compare four
XD variants: XDC, where all tasks have the same constant
length; XDG, where task length is chosen randomly from

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

6

https://doi.org/10.31256/Xg3Gx5E



(a) TurtleBot3 Burger (b) arena
Fig. 1. Experimental setup.

a Gaussian distribution; XDP, where task length is chosen
randomly from a Poisson distribution; and XDR, where task
length is chosen randomly from a uniform distribution1.

We also introduce a new bidding strategy that calculates
the estimated time for a robot to travel to a task location
instead of using travel distance as the basis of a bid. Thus
the bid takes into account the estimated travel time as well as
predicted task duration. The bid value b of robot r for a new
task x is calculated as: br =

∑Nr

i=1(Ti−1,i + Ei) + TNr,x,
where Nr is the number of uncompleted tasks robot r is
assigned, T is the estimated time to travel between two task
locations2 and E is the predicted duration of task i.

IV. EXPERIMENTS

We conducted a series of experiments with physical
and simulated Turtlebot3 robots (Figure 1a) using the
MRTeAm [5], [10] framework built with Robot Operating
System (ROS). Our experimental arena emulates an office-
like area divided into rooms and corridors (Figure 1b).

For our experiments, we employed three different auction
mechanisms (RR, PSI, SSI) two different starting configu-
rations: clustered together in one portion of the arena or
distributed around the arena; two different task constraints
(IT, CT); and five task durations (ID, XDC, XDG, XDP,
XDR). For each combination of parameters, at least 5 runs
were conducted in the physical environment and 15 runs in
simulation. In total, 1926 runs were completed.

Three performance metrics are analysed to assess the im-
pact of task duration: the total distance travelled collectively
by all the members of the robot team; the total run time
from the start of a mission until all tasks are completed; and
service delay time, the time from when an auctioneer awards
a task until a robot begins executing the task. Service time
is a new metric introduced here to reflect the time each task
“waits” before a robot arrives at its location. Service time
measures how quickly a task’s execution can commence or
how long the task was delayed, i.e. left unattended. Arriving
at a task location quickly is an important factor in many
application domains, especially in emergency situations. A
shorter service time is preferred because it means the robot
team is able to arrive at task locations more promptly.

1The values employed here are: XDC: length=15 seconds; XDG: µ = 15
and σ = 3; XDP: λ = 15; XDR: range=(5, 35).

2T is calculated as the predicted travel distance times the average robot
velocity, which was determined experimentally to be 0.12m/s.

V. RESULTS

Our analysis assesses the impact of task duration on the
three performance metrics. For brevity here, we present
aggregated results and make three comparisons: (a) across all
five task duration values; (b) instant versus extended time;
and (c) across the four extended time values. The number
of runs per aggregate are: ID: N = 330, XDC: N = 508,
XDG: N = 469, XDP: N = 379, and XDR: N = 240.

We looked for statistically significant results. After check-
ing that the data within each sample is normally dis-
tributed3, we tested for differences using analysis of variance
(ANOVA), with p < 0.01 as the threshold for statistical
significance. The results of statistical testing on individual
variables are shown in Figure 2, which illustrates the distri-
butions for each sample and indicates, for each of the three
types of analysis (above), which differences amongst samples
are statistically significant.

distance run time service time
(a) ID vs XDC vs XDG vs XDP vs XDR:

significant significant significant

(b) ID vs XD:
significant significant significant

(c) XDC vs XDG vs XDP vs XDR:
not significant significant significant

Fig. 2. Statistical differences. Statistical significance is noted where
ANOVA produces p < 0.01.

VI. SUMMARY

We have presented a study assessing the impact of task du-
ration on three different performance metrics collected from
experiments with multi-robot teams. We have introduced a
new bidding strategy which accounts for task duration and
a new metric for measuring performance delay due to task
duration. Statistical analysis of our results shows that there
are significant differences in all performance metrics when
tasks have non-zero duration (ID vs XD*) and in time-
related metrics when duration varies randomly according to
probability distributions defined by similar parameter values.

3Using the Shapiro-Wilk test [13]
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Abstract—Physical Human-Robot Collaboration requires 

humans and robots to perform joint tasks in a shared 

workspace. Since robot’s characteristic strengths are to cope 

well with high payloads, they are utilized to assist human 

operators during heavy pulling or pushing activities. A widely 

used sensor to detect human muscle fatigue and thus, to trigger 

an assistance request, is an Electromyography (EMG). Many 

previous approaches to process EMG data are based on training 

Machine Learning models offline or include a large degree of 

manual fine tuning. However, due to recent advances in 

Machine Learning such as incremental learning, there is an 

opportunity to apply online learning which reduces 

programming effort and also copes well with subject specific 

characteristics of EMG signals. Initial results show promising 

potential, yet, unveil a conflict between convergence time and 

classification accuracy. 

Keywords—EMG, Human-Robot Collaboration, Incremental 

Learning, Machine Learning 

I. INTRODUCTION

Human-Robot Collaboration (HRC) in manufacturing 
aims to establish symbiotic or synergetic effects between 
human operators and robots [1]. This is enabled by combining 
the characteristic strengths of each party. Human strengths are 
considered to be adaptability to changes, decision making, and 
problem solving [1], [2]. Robot’s strengths, on the other hand, 
are high precision, high operating speeds, and the capability 
of coping with high payloads [3]. Thus, in a physical 
collaboration, robots are able to support human operators via 
force amplification to handle heavy pushing and pulling 
activities [4]. In order to measure human muscle activity such 
as during the lift of heavy objects, a widely used sensor is an 
Electromyography (EMG) [5]. The approaches typically 
include pre-processing of the data, feature extraction, and a 
supervised leaning of the model [5], [6]. However, recent 
advances in Machine Learning regarding incremental learning 
could allow to minimize the training and programming effort 
of such models [7]. Furthermore, the algorithm could optimize 
its performance over time in an online system [7]. In this work, 
an incremental learning approach is utilized to predict EMG 
data during three different states: Participants lifting light 
payloads, medium payloads, and heavy payloads (struggling). 

II. RELATED WORK

In a Human-Robot collaborative scenario, humans and 
robots perform joint tasks in a shared workspace [1]. In order 
to communicate intentions of the human to the robot, sensors 
are utilized such as EMGs [5]. The EMG signals are usually 
acquired from a human upper-limb since they are mostly used 
in the given tasks [5]. The acquired data can be used to 
communicate movement intentions. It can also provide 
insights on human muscle fatigue [6]. In this case, a robot 

could assist a human operator during a heavy pull or push of 
an object or adapt its behavior to create more ergonomic 
working conditions for its human co-worker [6], [8]. This is 
intended to prevent injuries, as well as long-term health issues 
related to physical fatigue [8].  

Figure 1 shows the general process used to integrate 
EMGs in Human-Robot Collaboration for a supervised, non-
incremental learning approach. The first stage is EMG data 
acquisition. Critical attention is required during the selection 
of the acquisition device, the number of channels used, as well 
as the placement of each channel [5]. The channel acquisition 
device also determines the sampling rate and data 
transmission [9].  

During the pre-processing stage, raw EMG signals are 
checked for baseline offset [5]. Typically, the signal is 
corrected by subtracting the average amplitude from each 
instance, however, there are also approaches based on 
nonlinear error-modelling [5], [6]. Raw EMG signals are 
susceptible to contain noise. Thus, Butterworth filters with a 
cut off frequency from 2Hz-20Hz are utilized [5]. The 
remaining features are extracted in the Feature selection and 
extraction stage. This is critical during EMG data processing 
since it has a high impact on the classification accuracy [9]. 
Three properties are considered as essential: class separability 
(minimize overlap), robustness (separability in noisy 
environment), and computational complexity (low complexity 
of features implies lower processing times) [5], [9].  

The fourth stage is continuous classification of the filtered 
and extracted signals. There are mainly two types of 
prediction models. One is the use of kinematic models, the 
second approach is to utilize Artificial Neural Networks 
(ANNs) [5]. However, [9] states that Linear Discriminant 
Analyses (LDA) and Support Vector Machines (SVMs) are 
also widely used for EMG data classification. According to 
[5] there are few critical challenges remaining. Firstly, many

Figure 1 EMG Signal Processing for HRC (adapted) [5] 
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offline systems obtain high classification accuracies, yet the 
online performances of such systems are far from satisfactory. 
Secondly, there are subject-specific characteristics of EMG 
signals. This can even include variation of the EMG signals 
for the same person during different recording sessions. An 
opportunity to increase the performance and to lower 
programming and fine-tuning effort could be incremental 
learning. Incremental learning algorithms have the following 
characteristics: ability of life-long learning, ability to 
incrementally tune the model’s performance, and no prior 
knowledge about the data and its properties is needed [7].  

III. EXPERIMENTAL SETUP

The experimental setup aims to collect EMG data during 
three different stages: light payload, medium payload, and 
high payload, during which a participant is slightly struggling. 

The acquired data will be fed into the classifier unlabeled. 
However, in order to validate the prediction results, predicted 
classes and the actual classification will be compared.  

IV. RESULTS AND DISCUSSION

The collected data was used to train an Online Random 
Forest (ORF) model, that aims to classify the EMG signals 
into low payload, medium payload, and heavy payload. In any 
incremental learning approach, the most crucial property apart 

from accuracy is the convergence time. Since the model aims 
to minimize the prediction error live and immediately. In 
Human-Robot Collaboration, this is exceptionally important 
as humans and robots are physically interacting. Hence, in this 
validation experiment convergence time of the ORF model 
was measured with a different number of trees, which is 
illustrated in Figure 3. 

As, expected, Figure 3 shows that the convergence time is 
directly proportional to the number of trees in the ORF model. 
The correspondent accuracy of the models in Figure 3 is 
shown in Table 1. The collected data for this experiment is 
~6000 data points of EMG signals and the associated labels. 
Based on Figure 3 and Table 1, it can be noticed that the model 
must achieve a trade-off between accuracy and convergence 
time. The ORF model with 20 trees seems to be the most 
suitable model since it can converge in less than 2 seconds, 
and it achieves the highest detection accuracy. 

Table 1 Number of Trees vs Prediction Accuracy 

V. CONCLUSION AND FUTURE WORK

A novel incremental learning approach was introduced to 
determine physical workload from EMG data in Human-
Robot Collaboration. During the online training, a conflict 
became clear between processing speed and accuracy. Lesser 
trees in the model meant faster convergence, however, it also 
resulted in the aforementioned lower accuracy. Overall, the 
accuracy could reach 89% in only two seconds. Thus, in a 
Human-Robot Collaborative Scenario this would allow the 
system to recognize a human operator struggling with the 
payload. The collaborative robot could then support the 
operator and subsequently, create a more ergonomic 
environment. However, prior to this technology being ready 
to be used in a practical application, further testing is essential. 
This includes the need for a larger sample size in participants 
and a richer variety in lifting tasks. The current setup allows 
to detect muscle contraction in participant’s forearms and 
biceps. Yet, more EMG sensors placed on other muscle 
groups such as triceps and shoulders are expected to provide 
better results for predicting pushing activities. Furthermore, 
the system could be trained to not only detect temporary high 
payloads but also to recognize muscular fatigue during 
endurance tasks. This could help to improve human operator’s 
posture and subsequently prevent negative long-term health 
effects. 

Nevertheless, early results of this incremental learning 
approach demonstrate a reduced manual fine-tuning effort and 
it coping well with subject specific characteristics in the data. 
This offers the potential to be applied for additional human 
sensor technologies and subsequent data classifications. 
Ultimately, this could help to make Human-Robot 
Collaboration safer and more efficient. 

Number of 
Trees 

5 10 15 20 25 30 

Mean 
Square Error 

0.26 0.19 0.250 0.14 0.15 0.17 

Accuracy 

[%] 

82.3 84.6 85.2 89.7 86.7 86.7 

Figure 2 Experimental Setup 

Figure 3 ORF convergence time 
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Abstract—Most studies on real-world multi-robot systems have
been performed in controlled laboratory environments, whereas
the real world is unpredictable and sometimes hazardous. I have
recently suggested that the natural phenomenon of phenotypic
plasticity provides a useful bioinspiration framework for making
such systems more resilient in field conditions [1]. Phenotypic
plasticity occurs when a single genotype produces a range of
phenotypes (observable traits) in response to different environ-
mental conditions. Consistent individual behavioural differences
can result from such plasticity, and have been described as
‘personalities’. At the same time, in social animals, individual
heterogeneity is increasingly recognised as functional for the
group. We can exploit this functional heterogeneity as engineers
trying to design field robot systems, and phenotypic plasticity
can provide meaningful diversity ‘for free’, based on the local
experience of agents. Personality axes such as bold–shy or
social–asocial can be represented as single variables, with the
advantage of being transparent and intuitive for human users,
and predictable in their effects. For example, in a dangerous
environment, robots may become more ‘shy’ and ‘social’ to stay
closer together and out of harm’s way.

Index Terms—phenotypic plasticity, reaction norms, resilience,
personality, functional heterogeneity, field robotics

I. INTRODUCTION

There is increasing recognition in biology that consistent in-
dividual differences in behaviour (‘personality’) among group
members can be important for group function in local ecolo-
gies [2]. Examples of significant personality axes include: risk-
taking behaviour (boldness—shyness), exploratory behaviour
(neophilic—neophobic), activity levels (active—inactive), so-
ciability (social—asocial), and aggression (aggressive—non-
aggressive) [3]. Variation can also be seen in reaction
threshold-type behaviours, for example the acceptability of
options in a decision task [4]; one might term this ‘choosiness’
or ‘pickiness’. Despite the definition of personality relating to
consistent differences, personality is also recognised as being
somewhat variable – plastic – over time.

The term developmental reaction norm (DRN) describes the
range of phenotypes generated by a given genotype (artificial
agent controller) in response to experienced environmental
cues [5]. There are at least five attributes to DRNs: amount
of plasticity (large/small); pattern of response (e.g. monotonic
increase/decrease or more complex reaction curves); rapidity

EH acknowledges support from the Royal Academy of Engineering and
the Office of the Chief Science Adviser for National Security under the UK
Intelligence Community Postdoctoral Fellowship Programme.

of response; reversibility of response; and competence (pos-
sibility) of the developmental system to respond at a certain
stage in an organism’s (agent’s) lifetime [5]. One can refer
to behavioural reaction norms (BRNs) if behaviour is the
focus, as is the case here (plasticity can also be observed in
physiology and morphology). BRNs can be a useful frame-
work for integrating the notions of animal personality and
individual plasticity [6]. In biology, the various attributes of
developmental reaction norms are, in principle, subject to
natural selection [5], [6]. I suggest that engineers attempting
to deploy collectives of robots into real-world field conditions
can undertake pre-deployment artificial evolution of DRNs.
This should establish an adaptive DRN profile [1].

Examples of personality variation can be readily found at
the level of the individual or the whole group, which gives rise
to the notion of collective personalities [7]. Behavioural plas-
ticity allows organisms to make relatively rapid adjustments in
their function to adapt to changing environmental conditions,
and can be seen as personality adaptation [6]. This is true
for individuals, and also for whole groups: for instance, in
leaf-cutter ants the whole colony can become more threat-
responsive and aggressive in response to disturbance [8].

II. PERSONALITY PLASTICITY AS COMPLEMENTARY TO
EXISTING APPROACHES

There are already several examples in the swarm robotics
literature in which individual robots, though identically pro-
grammed with the same controller, end up behaving differently
according to their experience of the environment. These are
briefly:

• Off-line (pre-deployment) evolutionary optimisation to
identify environmentally contingent behaviours that are
adaptive at the group level (e.g. [9]); though effectiveness
is tuned to the particular simulated environment.

• With sufficient computing power, one can undertake
on-line (on-deployment) evolutionary optimisation (e.g.
[10]). However, evolutionary approaches (off- or on-
line) could struggle in the field owing to unanticipated
circumstances or because of the ‘reality gap’ between the
world and (inner) simulation (e.g. [11]).

• On-deployment learning: typically this employs (evolved)
neural networks (e.g. [12]). Yet, neural network-based
approaches can have difficulty in scaling to more complex
problems [13] and be less human-readable.
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I suggest ‘personality’ adaptation can be an effective, min-
imal bio-inspired approach to learning, suitable for unpre-
dictable real-world environments and potentially complemen-
tary to the above approaches. The notion of personality maps
readily to adaptive threshold-based behaviours: for example,
the likelihood of switching behaviours in probabilistic finite
state machines (e.g. [14]). Animal personality research can
indicate simple behavioural mechanisms (‘interaction rules’)
that adaptively shape personality. For example, the frequency
of social interactions can relate to boldness changes [15]. Such
rules can be transposed into embodied and/or virtual artificial
agents working in collectives. Principle advantages of this
approach could include:

• Various major personality axes could be relevant to
groups of field robots, and these can each be represented
as a single variable.

• Personality variables can adapt quickly and predictably
to changing environments.

• The notion of personality is intuitive for human users.
• Individual experience of the environment will lead to

a certain amount of group-level diversity in personality
variables, the advantages of which I outline in Section
III.

Plasticity occurs in response to local environmental cues,
so one must also consider the relevant environmental features
(physical and social) that will elicit change – and how they will
be sensed. For example, one may wish to use agent density as
a proxy for group size. This could be sensed via frequency of
physical interactions, which in turn could be correlated with
risk-taking behaviour [15], if one prefers individuals in larger
groups to take on a higher risk appetite.

III. ADVANTAGES OF BEHAVIOURAL DIVERSITY

A group of identically-programmed (homogeneous) agents
deployed into a variable (heterogeneous) environment will
each experience different conditions, to a greater or lesser
extent. Each may benefit from individual adaptation; or indeed,
individual differences may occur which have little significance
when considered in relation to the direct ‘fitness’ of a single
individual. Nevertheless, at the level of the collective, such
heterogeneity may make an important indirect contribution
to the fitness of the swarm, as part of an adaptive collective
phenotype [16]. As such, the group-level distribution of per-
sonality traits may be self-organized through interactions with
the environment and others to favour a certain ecologically
relevant pattern [15], as I go on to illustrate.

A. Animal collectives

1) Diversity for decision-making: Autonomous collectives
– whether in biology, robotics or elsewhere – need to be
capable of making collective decisions. Diversity of reaction
thresholds or option assessment behaviour, as seen in ants,
can help this process [4], [17]. As an example of this, a
proportion of individuals with high acceptance thresholds may
reject medium-quality options, and thus through continued
exploration go on to discover higher-quality possibilities.

2) Diversity for homeostasis: In biological systems pheno-
typic diversity can also promote positive collective success: for
example, in honeybees diversity in reaction thresholds for their
cooling behaviour promotes stability in nest thermoregulation
[18]. Although this example is driven by corresponding genetic
heterogeneity, it could equally be designed in an artificial agent
context to result from phenotypic plasticity.

In Stegodyphus social spiders the group-level distribution
of boldness is important for their collective predation perfor-
mance [19]. Thus, one expects some form of mechanism to
maintain a suitable collective boldness phenotype, and indeed
there is evidence for a link between social interactions and
boldness change to achieve this via self-organization [15].

3) Diversity as a shield against adversity: Inbreeding in
agriculture is observed as a cause of disease vulnerability,
because a single pathogen virulent against one individual
can quickly spread across the whole population; conversely,
diversity can help resistance [20].

Similarly, robustness is frequently claimed for swarm robot
systems, but if a homogeneous controller results in homo-
geneous behaviour it may be liable to systematic failure if
the swarm encounters unexpected environmental conditions or
faulty or malicious agents.

4) Diversity for foraging and search: Variation in individ-
ual behaviour can also be important for effective foraging
and search, as demonstrated for example by Fricke et al.
in immune-system-inspired search algorithms [21]. If search
targets have heterogeneous configurations (for example, some-
times low density, other times high density) a collective of
agents will be more effective if individuals behave differently.

B. Human teams

There is evidence that teams with more diverse personality
types are more effective: for example, Mohammed & Angell
found that higher variability in extraversion results in higher
task performance [22]. In this context I suggest that there
are opportunities to enhance collective intelligence in human-
AI interaction. Virtual agents and robots could benefit from
suitably plastic personalities to adapt and complement the
shortcomings or absence of relevant behavioural types in their
human teams. This could be done as virtual team members or
as adaptive social assistance robots [23], working as facilita-
tors, contributing to a successful ‘hybrid’ team phenotype.

IV. CONCLUSIONS

As we deploy robots into real-world field conditions, equip-
ping them with smart behavioural reaction norms – plastic
personalities – could help them to work effectively in unpre-
dictable conditions: individually, and as a a team. Advantages
could include simplicity (single personality variables), trans-
parency, intuitiveness, predictability, and automatic diversity
in multi-robot teams from local experience. Future work
will focus on demonstration of these concepts in simulation,
before experiments on real world platforms such as unmanned
ground vehicles (UGVs) undertaking tasks such as search and
decision-making in unpredictable environments.
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Abstract—Multi-Agent Systems have the potential advantage
of graceful degradation over Single-Agent systems. This is a
desirable trait in applications that require area coverage with
failure-prone UAVs. This paper uses methods informed by
Reliability Engineering to study this formally by using a new
stochastic framework which evaluates a strategy’s probability of
task completion. Based on this analysis, an integer linear pro-
gramming formulation of the problem is then shown to provide
almost optimal strategies at a fraction of the computational cost
of brute force methods.

Index Terms—Multi-Robot Systems, Coverage Path Planning,
Reliability Analysis

I. INTRODUCTION

Multi-agent systems are well known to provide greater relia-
bility, resilience and fault tolerance to individual and system
level failures compared to single-agent systems [1, 2]. This
robustness property makes a multi-UAV system especially
suited to the problem of area coverage and inspection, as
UAVs are particularly prone to failure [3–5]. Whilst [6, 7]
consider failure handling, they only assert eventual comple-
tion. This work takes a probabilistic planning approach to
model failures to provide temporal guarantees of completion.
Figure 1 motivates this problem - by what evaluation method
is strategy 2 optimal? The aim of this paper is to present
(1) an exact reliability evaluation framework, inspired by the
field of Reliability Engineering [8], (2) a computationally
feasible approximate method, for multi-drone path planning
which takes into account the uncertainty in failure of individual
drones, such that the Probability of Mission Completion (PoC)
is maximised. The resultant plan is thus the Pareto-Optimal
strategy with respect to reliability and efficiency.

II. MARKOV RELIABILITY ANALYSIS FRAMEWORK

The state of the system of n agents A at a time t is xt =
(τ t1, . . . , τ

t
n) ∈ Nn = S where τ ti is the length of time agent i

has survived (i.e. the useful time worked) under the following
Markov transition rule:

τ ti =

{
τ t−1i + 1 if agent i survives
τ t−1i if agent i fails or already failed

(1)

This work has been funded by the Engineering and Physical Sciences
Research Council (EPSRC) iCASE with Toshiba Research Europe Ltd and
FARSCOPE Centre of Doctoral Training at the Bristol Robotics Laboratory

X
Agent 1's Path

Agent 2's Path
Strategy 1? Strategy 2?

Fig. 1. Consider 2 drones covering a 1D cyclic path. Agent 1 suffers a failure.
Should Agent 2 follow strategy 1 or 2 such that the greatest probability of
completion is achieved? Intuitively, it must be strategy 2, but why?

A set of m spatially connected, discrete tasks in an envi-
ronment is defined as J = (j1, . . . , jm). A strategy is then
defined as a function πi(x, t) = j, x ∈ S and j ∈ J where
j is the task performed by agent i at time t given the health
states of all agents x.
This framework is described with respect to static strategies:
pre-allocated fixed paths for each agent with no dependencies
on the state S. The strategy matrix T ∈ Nn×m can be defined
where Tij = the time at which agent i visits task j. T can be
mapped onto πi(x, t), for any time t and agent i, by finding
the task j such that Tij = τi. A task j is completed by agent
i if agent i survives longer than the time at which the drone
is scheduled to visit task j, i.e τi ≥ Tij .

A state x ∈ C ⊆ S is a coverage completion state iff:

F (x) = min
j∈[1..m]

Ej(x) = min
j∈[1..m]

max
i∈[1..n]

τi − Tij ≥ 0 (2)

as the time since completion of task j, Ej(x) ≥ 0 for all
tasks J and therefore every task has been visited.
Given the failure probability density fi(τ) = pi(t = τ) for
each agent, the probability of completion (PoC) for a given
strategy T at a particular time t′ is the sum of the probabilities
of surviving until each of the completion states of t′, CT (t

′).

CT (t
′) = {x ∈ C|∀τ ∈ x, τ ≤ t′} (3)

PoC(T, t′) =
∑

x∈CT (t′)

∏
τi∈x

pi(τi, t
′) (4)

pi(τ, t
′) =

{
pi(t = τ) = fi(τ), if τ < t′

pi(t > τ) = Ri(τ), if τ ≥ t′
(5)

Equation (5) describes the case where the agent fails before
t′ and where the agent survives at t′. Ri(τ) is known as
Reliability. Failure Rate λi = fi(τ)

Ri(τ)
is a system parameter.

Reliability-Aware Multi-UAV Coverage Path 
Planning Using Integer Linear Programming
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Fig. 2. The PoC of all cyclic strategies for a path of length 12, with 2 agents,
λ = 0.1. Top performing strategies highlighted. Legend describes strategies
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Fig. 3. The difference in PoC between optimal strategies reported by the
computationally feasible brute force searches and the ILP. (#drones, #path)

Considering the state as ‘work done’, instead of explicit loca-
tions of agents and completion of tasks, allows the decoupling
of the state analysis from the probability analysis.
Complex non-static strategies may be defined based on agent
failures, but are difficult to formalise. In principle, the static
framework can still be applied by running a unique simulation
of π for every x ∈ S and labelling completion. In general
this is non-trivial apart from the ‘teleportation’ strategy where
task spatial constraints are not considered. Teleportation can
be proven to be the optimal strategy.
The framework can be used to find the Pareto-Optimal strategy
for a fixed time horizon in a brute force manner by evaluating
every strategy for a given number of drones and path. Figure
2 shows the optimal strategies found via brute force search
for the motivating problem in Figure 1. The strategy ‘[11,L]’
corresponds to Strategy 2 and provides a greater PoC by end
time 11 than Strategy 1, ‘[5, R]’, which agrees with intuition.

III. INTEGER LINEAR PROGRAMMING APPROACH

The brute force method, whilst exact, is only computationally
feasible for small scenarios (e.g. 4 agents, 20 path takes a
week). An Integer Linear Programming (ILP) formulation is
presented to provide an approximation of the optimal strategy,
whilst being computationally tractable.
A strategy is represented by the binary variable X where
Xij(t) = 1 iff agent i visits task j at t. Instead of maximising
PoC directly, the ILP minimises the maximum log-probability
of any single task j being missed ln p(mj). p(mj) is then
the probability of all agents independently failing before their

scheduled visits of j.

minimize
X

max
j

ln
∏
i

∏
t

F (t)Xij(t) (6)

=max
j

∑
i

∑
t

Xij(t) lnF (t) (7)

subject to
∑
j

Xij(t) = 1 ∀i, t (8)∑
i

Xij(t) ≤ 1 ∀j, t (9)∑
i

∑
k

Xij(t) ≥ 1 ∀j (10)

Xij(t) ≤
∑

j′∈N (j)

Xij′(t− 1) ∀i, j, t (11)

∑
t

Xij(t) ≤ 1 ∀i, j (12)

Where (8) ensures every agent can only do 1 task at each
time. (9) ensures every task is visited at some time and (10)
ensures every task is visited at some time by some agent. (11)
constrains agent movement to neighbouring tasks. Finally (12)
stops an agent from visiting a task more than once.
By minimising maxj p(mj), the ILP makes it unlikely that any
given task is missed. Intuitively, this makes completion more
likely, and it can be shown that it maximises a lower bound
on PoC. It is not equivalent to a direct optimisation of PoC
as it does not capture task inter-dependencies. Nevertheless,
experiments suggest that the ILP selects strategies whose
PoC comes close to the optimal PoC, found by exhaustive
evaluation.
The PoC of the ILP’s chosen strategy is calculated by con-
verting X into a static T matrix for the Markov Framework.
To evaluate the accuracy, the ILP is applied to cyclical paths
of various lengths and numbers of drones using the Gurobi
LP solver [9]. Figure 3 shows the difference between the
PoC of the strategy obtained through brute force evaluation
compared to the outputted strategy of the ILP. The ILP appears
to provide a very close PoC with its strategy choice, only a
small deviation for longer paths. This is promising as close to
exact accuracy can be obtained from a method which takes a
fraction of the time (e.g. 4 agents, 20 path takes minutes).

IV. CONCLUSION

This paper proposes that for applications where knowing all
tasks are completed are crucial, but the hardware is prone
to failure, reliability may be favoured over efficient plans.
Inspired by Reliability Engineering, a probabilistic evaluation
framework is presented which reports on the probability
of completion of a mission given a strategy. The Pareto-
Optimal strategy can be found through brute force evaluation
of all strategies, but this is computationally infeasible. An
Integer Linear Programming approach is shown to provide
almost optimal results for a fraction of the computation time.
Future work will include exploring non-linear optimisation
approaches as well as considering more complex drone failure
models such as localisation and communication failures.
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Abstract—Robots sharing a common working space with
humans and interacting with them to accomplish some task
should not only optimise task efficiency, but also consider the
safety and comfort of their human collaborators. This requires
the recognition of human intentions in order for the robot
to anticipate behaviour and act accordingly. In this paper we
propose a robot behavioural controller that incorporates both
human behaviour and environment information as the basis of
reasoning over the appropriate responses. Applied to Human-
Robot Interaction in an agricultural context, we demonstrate
in a series of simulations how this proposed method leads to
the production of appropriate robot behaviour in a range of
interaction scenarios. This work lays the foundation for the
wider consideration of contextual intention recognition for the
generation of interactive robot behaviour.

Index Terms—Agricultural Robotics, Human-Robot Interac-
tion, Intention Recognition, Belief-Desire-Intention System

I. INTRODUCTION

Introducing robots into a human working space can increase
efficiency but should not come at the cost of comfort or
safety. To achieve this balance in a challenging setting like
agriculture, a robot needs to understand the intentions behind
their coworkers’ behaviour and basic communication. Gestures
form an ideal medium to maintain reliability in adverse
circumstances but are limited to situations where the human
has their hands free. Additional clues from the environment
as well as behaviour analysis can be used to estimate their
state. Our interpretation of intentions [5] sees them as the
meaning [4] of, explanation [7] for, or idea [9] behind an
action, plan or utterance. In our agricultural setting, workers
pick berries into crates in a poly-tunnel environment. The
robot is acting in a supporting role, supplying the human with
empty crates, taking away full crates and staying out of the
way the rest of the time. To facilitate the robot’s autonomy,
we created in integrated sensor data processing pipeline and
Belief-Desire-Intention (BDI) [1] agent system. The general
motivation for this system is that in order to ’understand’ the
intentions of their human interaction partner (from observable
behaviour) and to generate appropriate responses, the robot
should consider both the environmental context but also its
own goals (or ’desires’): this supports our use of a BDI

Supported by the RASberry project (https://rasberryproject.com), and the
CTP for Fruit Crop Research (www.ctp-fcr.org).
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architecture. This work summarizes a first evaluation of the
system’s performance in a range of scenarios. We evaluated
the system in simulation, using sensor readings as well as
statistical data gathered in real-world poly-tunnels.

II. HUMAN-ROBOT INTERACTION (HRI) SYSTEM

A. Data Processing: The robot perceives its environment
through a stereo RGB-D camera, a thermal camera, 2D and
3D LIDAR, as well as differential GPS and odometry. It
can also receive its coworkers’ location either provided by
GPS or ultrasonic localization and is supplied with prede-
fined topological and laser maps. During this simulation, the
robot determines its position using simulated laser scans and
odometry. The location of the human is supplied by a picker-
simulation engine and abstracted using Qualitative Trajectory
Calculus (QTC) [8].

As shown in Fig. 1, the video is first pre-processed using
OpenPose [2] to extract joint positions. Those are further pro-
cessed to extract joint angles before both are fed into a naive
classifier that produces pose labels for each frame individually,
based on predefined prototype poses. Series of frames are
classified using voting rounds where each frame contributes
a single vote towards a pose. Whichever pose first wins 10
votes, labels the round. The movement samples used in this
evaluation are part of a new dataset for Action Recognition
in agri-robotics. It contains samples of behaviours, such as
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picking of berries and carrying of crates, and samples of
gestures to communicate with the robot. The samples were
recorded from 10 different subjects between morning and
early afternoon in a poly-tunnel environment featuring ripe
strawberry plants.
B. Belief-Desire-Intention Agent: The BDI system chooses
intentions (plans to reach a goal) from its desires (abstract
goals) based on its beliefs as captured in the Knowledge Base
(KB)1. This separates reasoning about which goals to achieve
from managing the execution of said goals. This allows us
to consider more contextual information when deciding which
goal to follow and leads to an aesthetic analog to our idea of
human motivation, intention and action on the robot.

In our system, plans are represented as ordered tree struc-
tures with executable actions as leafs. Actions have a set of
preconditions and expected consequences, which combine to
form the preconditions and expected consequences of a plan.
When the agent decides which of its desires are applicable in a
given situation, it searches the KB for patterns of beliefs that
match its desire’s preconditions. If successful, it produces a
corresponding intention. When idle, the robot chooses from the
possible next actions defined by its current intentions, based
on utility and expected time requirements.

III. EVALUATION

In the context of interactions between a robot and a human
in an agricultural context, we explore three scenarios (Fig. 2).
They cover different situations in the work environment:
starting to work (crate delivery), moving around (evading the
human), and resupply (crate exchange). Both the delivery and
exchange scenarios are initiated by the human gesturing to the
robot, but require a different response. The robot can make the
distinction based on prior observed human behavior (whether
the person has been picking berries). The evasion scenario
is triggered by human behaviour (approaching) without any
conscious interaction.

1We are using OpenCog’s [6] AtomSpace and Pattern matcher for knowl-
edge representation and reasoning.

Fig. 2. Left: Delivery Scenario: Meet the human, wait for 2.5 seconds, leave.
Middle: Evasion Scenario: On human approach, move to the next waypoint.
Right: Exchange Scenario: Meet the human, wait for 5 seconds, leave.

TABLE I
EXPERIMENT RESULTS

Scenario Success Meeting Distance [m] Time to Service [s]
Rate µ σ µ σ

Delivery 0.99 0.37 0.007 12.65 22.552
Evasion 1.00 N/A 10.06 1.706

Exchange 0.99 0.37 0.006 11.83 0.634

The recorded human behaviours in poly-tunnels (Section
II), are passed as input to the proposed system (Fig. 1), acting
on a simulated environment. Given 10 recorded subjects, 20
simulations per subject are performed (given a stochastic
simulation), resulting in 200 simulations per scenario.

Table I shows for each scenario the mean (µ) and standard
deviation (σ) of the three metrics of evaluation: success
rate, meeting distance and time to service. Success rate is
defined as the share of experiment runs that ended with the
robot successfully interpreting the situation and performing
the expected actions. Meeting distance is the distance between
human and robot at which the robot decided to halt to facilitate
the delivery or exchange of a crate. The variance for this metric
can be interpreted as an indicator of how much reasoning
affects the agent’s reaction time (the robot and human don’t
meet in the Evasion case). Time to Service is the time between
the human displaying behaviour that should trigger a change
in robot behaviour, and the time at which the robot performed
the expected action (delivered or exchanged a crate, or moved
away from the human to the next waypoint). This time consists
mainly of the time it takes to detect the behavior, the time it
takes to meet the human (∼4s), and the time for the delivery
(2.5s) or exchange (5s) of crates. The large variance for the
Delivery scenario stems from the robot’s failure to detect one
subject’s behavior correctly. Without these cases, the variance
for the Delivery scenario is 0.298.

IV. CONCLUSION

Our evaluation shows benefits compared to a system that is
unaware of its human coworkers except for their location and
service calls. However, they do not directly support any claim
of advantage over a simpler, reaction-based, human-aware
system. The hypothesis is that by using intention recognition to
anticipate the human’s requirements, there will be observable
benefits in both task efficiency and perceived comfort of the
interaction, but this requires validation.

The service times of under 15s are short in comparison to
the 110 ± 44s [3] it takes for the robot to service the picker
when stationed outside the field. This points at a potential
increase in productivity, achievable by estimating the next
time a worker requires the robot’s service and arriving in
the vicinity early (another source of information to facilitate
anticipatory robot behaviour).

Overall, while there remain a number of outstanding chal-
lenges, this paper has outlined the fundamentals of our ap-
proach: the consideration of both observable human behaviour
and the wider environmental context in supporting anticipatory
interactive robot behaviour.
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Abstract—There are many agricultural applications that would
benefit from robotic monitoring of soft-fruit, examples include
harvesting and yield forecasting. Autonomous mobile robotic
platforms enable digitisation of horticultural processes in-field
reducing labour demand and increasing efficiency through con-
tinuous operation. It is critical for vision-based fruit detection
methods to estimate traits such as size, mass and volume for
quality assessment, maturity estimation and yield forecasting.
Estimating these traits from a camera mounted on a mobile robot
is a non-destructive/invasive approach to gathering qualitative
fruit data in-field. We investigate the feasibility of using vision-
based modalities for precise, cheap, and real time computation of
phenotypic traits: mass and volume of strawberries from planar
RGB slices and optionally point data. Our best method achieves
a marginal error of 3.00cm3 for volume estimation. The planar
RGB slices can be computed manually or by using common object
detection methods such as Mask R-CNN.

Index Terms—phenotyping, mobile robots, computer vision

I. INTRODUCTION

Fruit detection is an area fast gaining interest in the horti-
cultural industry. The environmental challenges posed by the
fast growing population and climate concerns are spurring
new innovative approaches to fruit detection, harvesting and
yield estimation using computer vision e.g [1]–[3]. Phenotypic
information such as volume shown in 1 about the fruit is im-
portant for all of these approaches. For harvesting it allows to
automatically grade and harvest specific berry classifications,
and for yield more specific estimates such as detection of
waste strawberries or estimating a total yield volume can be
computed. Phenotypic information is critical for any form of
quality assessment.

Our method aims to estimate mass and volume of soft-
fruit from robotic platforms in-field. We present a feasibility
study in lab conditions for estimating these traits from images
based on the intuition that most soft-fruits are ellipsoidal in
nature and symmetrical around their major-axis. Meaning the
methods presented are applicable to most of the soft-fruit
family. Geometrically the major axis is the longer axis of an
ellipse passing through its foci or centre of gravity in the case
of our planar segment; minor axis is the shorter axis directly
perpendicular to the major.

This work was partially funded by the RASberry project.

(a) Actual Volume = 35.00cm3 (b) Predicted Volume = 34.53cm3

Fig. 1: Strawberry volume prediction, RGB image (1a),
computed reconstruction surface of RGB segment (1b)

II. DATA AND METHODS

In order to evaluate our methods, we required mass and
volumetric data of soft-fruit. We chose to evaluate straw-
berries as they are readily available and have one of the
most challenging shapes in the soft-fruit family compared to
blackberries, blueberries etc. their surface is not as ellipsoidal
and has a more teardrop profile. We collected 20 samples
of class 1 ripe strawberries. To capture the data necessary,
we used a 2cm3 precision volumetric beaker, a 5g accurate
scale, a 0.01mm accurate digital caliper and an Intel Realsense
D415 computer vision camera to capture RGB images and
depth information, pictured in Figure 2. Each strawberry was
measured in three dimensions manually through its minor,
major and cross sections which are the widest, tallest and
deepest lengths of the berry respectively. Then it was weighed
and placed in the volumetric breaker, a control rod of a
known volume was used to fully submerge the berry to get
more accurate readings. Finally, the berry was placed at a set
distance away from the downwards facing camera, flat on a
table to simulate the conditions met in field and the RGB and
depth information was captured and logged.

A. Volume Estimation

A segment (planar RGB slice) is a binary mask detailing
all of the pixels that belong to an object in an image. We use

Feasibility Study of In-Field Phenotypic Trait 
Extraction for Robotic Soft-Fruit Operations
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Fig. 2: Equipment used for data collection.

these segments to estimate the volume of the strawberries. The
computational resources required to process these segments are
very low and are a typical output of modern object detectors
in this field, meaning this approach is easily integrated with
existing work with negligible overhead. We present the results
in Figure 3.

The three evaluated methods are ellipsoidal, surface area
integration and disc summation. The ellipsoidal method com-
putes the volume as 4

3πmimad where mi is the minor axis, ma

is the major and d is the cross section length. These volume
measurements are computed from both the ground truth (GT)
data and measurements extracted from the depth map. The
method we deem surface area integration uses the fundamental
relationship in calculus that states the integral of a function f
over an interval can be calculated by finding an anti-derivative
F of f . For an ellipsoid the volume is the integral of the
surface area with respect to the radius.

f(c, r) =
r

mi

(∑n
k=0(cxk, cyk)

n
− c

)
+ c (1)

V = 2

∫ r

0

2a(f(c, r))dx (2)

In Equation (2) we show the integral for computing the
volume V of an irregular segment, by taking the product
of dx, the height of each slice and the contour c. We scale
each slice by each slice radius r in function f(c, r) (1) and
calculate its area a(f(c, r)). The function a(x) is the shoelace
algorithm for finding area of simple polygon (no intersection
or holes) expressed as Cartesian coordinates of a segment. We
use the integral range [0, r] and multiply the result by 2 to
only consider positive contour values.

vi =
n∑

j=1

cij v =

(
π
v2i
4
dy

)n

i=1

V =
n∑

k=0

vk (3)

Finally, the disc method shown in Equation (3) estimates the
volume of the segment by treating each of its rows of size dy
as a cylinder. The segment is split into sizes of dy for each the

Fig. 3: Volume estimates using surface area integration.

volume is calculated as πr2dy . This method should be more
robust than the integration step in cases when the orientation
estimate error is large. Since each row is treated independently,
a more complete surface not dependant on axial symmetry can
be reconstructed, whereas with integration the entire contour
is used with a singular estimate of the cross length.

c′x =
zmax

fx
(cx − px) c′y =

zmax

fy
(cy − py) (4)

The presented methods approximate the volume in pixels
(px2). To calculate the volume in centimetres (cm2), we simply
deproject the contour c by the camera intrinsic parameters
focal length fx, fy , principal point px, py and an estimated
distance zmax from the camera obtained from the max value
bounded by the segment. For the disc method the zmax value
is equal to the local max at each row rather than the entire
segment. The deprojection step is shown in Equation (4) and
is applied prior to volume estimation.

B. Mass Estimation

We model the relationship of mass and volume as the least
squares regression fit to our data, and estimate the mass from
predicted volume fit.

III. RESULTS AND CONCLUSIONS

We have presented a non-invasive/destructive, inexpensive
method for volume and mass estimation in-field designed for
use on a robotic platform. Our results for volumetric and mass
estimation of the chosen soft-fruit are presented in Table I.
It’s evident that this method is appropriate for calculating the
volume from only two dimensional data (segments) since the
median absolute error is only 3.00cm3 for the best method,
which is only 1.00cm3 above the maximum precision of the
volumetric measurements. The relatively poor results for mass
estimation were due to the low precision of the equipment.

Ellipsiod GT Ellipsiod Depth Integration Disc
Volume 3.28cm3 3.94cm3 3.00cm3 3.22cm3

Mass 10.19g 11.90g 9.96g 9.85g

TABLE I: Median Absolute Error of volume and mass
estimation methods, bold indicates the best method.
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Abstract—Personalisation and adaptation of Ambient Assisted
Living (AAL) solutions is the subject of many existing works,
which seek to embed and/or learn user preferences and needs.
However, with a focus on lab-based evaluation, it has been easy
to overlook the potential realities of what AAL might look like
in the future: a range of heterogeneous platforms, devices, and
robots will generate swathes of knowledge that must be shared,
within and outside the home. As such, it is important to consider
scalability and interoperability in every aspect of future AAL
solutions. Adaptivity as a Service (AaaS) is proposed as a highly
specialised service with a core function of personalising and
adapting smart homes and AAL systems to the needs and wants
of individuals.

Index Terms—adaptivity, personalisation, Ambient Assisted
Living (AAL), robotic care, Human-in-the-Loop (HITL), Digital
Twin

I. INTRODUCTION

It is expected of future AAL solutions to be adaptive. It
has been recognised for over a decade that this adaptivity
must be deeply ingrained in AAL systems at the ”algorithmic,
architectural, and human interface” levels [1]. They must
adapt to the changing habits, evolving needs, and individual
preferences of users.

A recent stakeholder participatory study on requirement
gathering for future assisted living solutions found that long-
term personalisation and adaptation is vital for elderly users:
the system must understand the impact of the ageing process
[2]. Furthermore, solutions must be goal-oriented in that they
work towards delivering a desired user state. This suggests a
high degree of autonomous adaptation, which is in contrast
to previous works which have suggested solutions be adapted
over time through iterative user surveying to ensure the solu-
tion still meets the needs of the user [3].

It has been common in the past to think of personalisation
as something that is not integral to the architecture of the
system, but rather as an added feature. As such, there a number
of approaches which propose the use of a Graphical User
Interface (GUI) to provide personalisation insofar as some
parameters of the system are modifiable by the user (e.g. [4]
[5]. However, this puts a significant burden on the user in
terms of effort, effectively causing the user to adapt to the
system, rather than vice versa.

This work was supported by the Engineering and Physical Sciences
Research Council (grant EP/L016834/1), EPSRC Centre for Doctoral Training
in Robotics and Autonomous Systems.

Other solutions may instead provide a set of predefined
templates of a user profile. For instance, in an AAL system
these could be “dependent, assisted, at risk, and active” [6].
Users can be manually assigned, or automatically classified,
into these categories so the system can modify behaviour
accordingly. However, these approaches are limited: (1) to
models provided during the design phase; and (2) in that it
is virtually impossible to cater for elderly individuals with a
wide and diverse range of needs.

It is increasingly common to see approaches which adapt
in real-time, such as the social robot ‘GrowMu’, which offers
services to users based on their emotion and where the robot
is in the environment [7]. The robot is trained (offline) to
gravitate towards services which elicit a positive response.
While useful, the approach is limited to service selection only,
with little regard to adaption within those services.

In contrast, Adaptivity as a Service (AaaS) is inspired by
established ‘hybrid’ approaches in Human Activity Recogni-
tion (e.g. [8]): hybrid models fuse knowledge- and data-driven
sources to enable adaption to individual users and improve
baseline performance and scalability. This typically means
starting with initial ‘seeds’ (templates) of what a system can
recognise or do (from provided knowledge), while subsequent
data collection at run time enables a semi-supervised learning
process to grow capability over time.

Where existing approaches focus primarily on providing one
or a few dimensions of personalisation and adaptivity within
AAL solutions, AaaS puts it at the core. AaaS is proposed
as a highly specialised service that combines extensive user
modelling, distributed learning, and knowledge transfer [9].

II. PROPOSAL

AaaS addresses three types of long-term adaptation [9]:
1) Adapting context-awareness itself to account for pre-

dicted physical and mental decline, based on individual’s
known conditions and principles of ageing.

2) Adapting assistive functionality, including interaction
modalities, to fit an individual’s exact needs/wants.

3) Adapting quickly to new users, based on experience.
AaaS is ‘distributed’ in the sense that services are delivered

in-home, through ‘local’ nodes, while data is aggregated and
processed centrally, at a ‘global’ level. A (simplified) concep-
tual architectural overview of AaS is provided in Figure 1. As
shown, AaaS sits between existing AAL components, acting
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Fig. 1. Conceptual architecture overview of AaaS.

as an intermediary, similar to the concept of an ‘adaptivity
layer’ proposed in [10]). The user is a single member in a
population of individuals requiring personalised and adapted
AAL. This population-centric view enables knowledge transfer
and learning from common experience at the local level.

AaaS addresses the three types of adaption with a two-
pronged approach to Human-in-the-Loop operation: (1) im-
plicit consideration of the user in decision making, and (2)
continuous learning of desired system behaviour relative to
user profile for the updating of beliefs.

III. A HYBRID MODEL

It is expected that AaaS employ hybrid models to: (1)
model users, and (2) enable personalisation. A Digital Twin
(DT) is therefore proposed to provide a digital counterpart
for each user, which is then evolved through a Human-in-the-
Loop (HITL) process that enables learning while implicitly
expanding the knowledge represented by the DT.

a) Digital Twin: The digital twin is a user model initially
comprised only of explicitly provided information (e.g. from
the user or their carers). Based on this information, a set
of initial Assistive Policies (APs) are selected and assigned
to the DT. Selection is based on learning from experience
with similar users. Policy reuse is fundamental in improving
the initial user experience and acceptance, providing a higher
degree of familiarity in the first instance.

Each AP is a general plan of an assistive functionality,
originally created from expert knowledge. All of these APs
together form a bank of policies covering a range of scenarios.
APs describe: (1) a plan of actions that can be carried out in
a robot-enabled home environment; and (2) the variability in
these plans. APs are not hardware-specific, and instead rely
on translation from the high-level to the command-level.

Through the policy personalisation process explained below,
APs evolve over time as they are fine-tuned to a given user.
In terms of forecasting, this has the following implications:
(1) short-term, AaaS can evaluate whether proposed actions
by a local planner (e.g. from the smart home / AAL system)
are sensical for the given user through hypothesis testing;
and (2) long-term, it allows forecasting of user behaviour
and health, which allows for monitoring of specific conditions
with/without the condition being specified in the DT.

b) Policy Personalisation: Realising a hybrid approach,
APs originally provided from knowledge engineering should
be evolved and branched out into a set of source APs from
a Reinforcement Learning (RL) and policy reuse process.
Knowledge can be extracted about the impact of certain traits
(e.g. the presence of a specific Mild Cognitive Impairment
[MCI]) based on the aggregation of real-world experiences
with relevant users.

APs are evolved to suit the wants, and needs, of each user.
The optimal state of users’ APs are used to enhance their DT,
and for policy reuse more broadly. This enables, for example,
the automated selection of an AP set for new users, based on
experience from similar users within the population of DTs.

IV. CONCLUSION & FUTURE WORK

Here, the fundamental principles of AaaS and its novel
distributed HITL approach have been outlined in relation
to existing challenges in AAL personalisation. Within AaaS,
individual homes can benefit from and contribute to a wider
network of adaptivity specialisation. Future research will need
to focus on the best approaches to meet key goals of AaaS.
Ultimately, the Digital Twin will serve as a rich source of data
that accompanies a user for life, which systems that deal with
personalisation independently may fail to replicate.

While the vision for AaaS is rather broad, research will fo-
cus on feasibility by addressing underpinning scientific issues,
enabled by our Robotic Assisted Living Testbed (RALT)1:
a 60m2, fully-furnished simulated apartment comprising a
bedroom, bathroom, and combined kitchen/dining/living area.

Work will therefore focus on: (1) encoding/representation
of personalisation and adaptivity policies/plans; (2) translating
these for heterogeneous AAL platforms and devices; (3)
merging and processing feedback to best reflect learning from
similar users; and (4) management of “unhealthy” feedback,
where users have moulded policy to their unhealthy wants.

The next phase will focus on adapting robot-enabled assis-
tance for some example scenarios. The target for adaptation
in the experiments is users with varying level of capability in
performing cognitive and physical tasks during a scenario, and
so the latent variable is user skill. The agent is the smart home,
as an ensemble of Internet of Things and robotic devices. A
scenario may represent, for example, a use case in which
an immobile user wishes to have a cup of coffee and the
adaptive service must learn how to meet this goal using the
devices at hand, in a way that suits the user. As such, the
AP for each scenario can be formulated as an RL problem,
with the state and actions of the system modelled in an MDP.
The transition function depends on user actions (e.g. requests,
feedback, active sensing), while rewards are allocated based on
successfully achieving the goal. The end product is that users
can effectively build their own solutions through interactions
with the system.

1Virtual tour available at https://ralt.hw.ac.uk/
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Abstract—Essential to agricultural robot deployment in farms
are accurate topological maps, which are manually created in
current systems. In this work we present a novel approach
to automatically generate a topological map along crop rows
from aerials images for the deployment of agricultural mobile
robots. We evaluate our system in a digital twin of a farm
environment using real-world textures and physical simulation,
and also demonstrate its applicability to aerial images of a real
farm.

Index Terms—Agri-robotics, Topological mapping, Mobile
Robot Navigation

I. INTRODUCTION

The deployment of fully autonomous mobile platforms
to real-world farms is fast approaching, aiming to solve
challenges from a growing population, labour shortage, and
pressure to reduce environmental impact [1]. The deployment
of fully autonomous mobile platforms to real-world farms
requires solving a range of technical challenges. First and
foremost safe and precise navigation across the farm environ-
ment. In this work, we present a novel approach to automatic
topological map creation from aerial views of a field to guide
the mobile robots along crop rows.

Thanks to recent advances in mobile robotics, manipulation
and computer vision, modern agricultural robots can be de-
ployed in various agricultural environments and are able to
complete tasks such as crop scouting, pest and weed control,
or harvesting [2]. Automated mapping of farm and field
environments is an essential stage towards their commerciali-
sation [1]. Currently, predefined topological maps are used to
navigate up and down crop rows to deliver crop treatments [3].
Farms are constantly changing, crop rows and farm structure
will vary over time requiring new topological maps which
are typically created manually [4]. Our proposed solution
addresses that problem by automating the topological map
creation. Although automated waypoint creation from a map is
a well-studied problem, it has not been applied in agricultural
applications. Current crop row segmentation algorithms often
rely on assumptions of straight, parallel, equally spaced crop
rows, using e.g. Hough transforms [5]. These perform well on
straight rows but fail when the crop rows are curved, which
often occurs in fields with trees, pylons or ditches, or when
the crop rows change direction in irregularly shaped fields [6].

Karoline Heiwolt and Willow Mandil are co-first authors.

Current solutions also commonly use sensors positioned close
to the ground and thus focus on local guidance [6], [7].

The key contributions of this paper are a novel method
of crop row detection and topological mapping from aerial
images, which takes into account common crop row variations
found in fields and evaluation of the method on both real world
fields and simulated digital twins.

II. METHODOLOGY

The proposed approach uses aerial images of a farm, such
as hi-resolution UAV or satellite images. In this work we use
real images of a Lincolnshire farm captured by UAV, as well as
a digital twin of a farm environment simulated in Gazebo [8].
The ground plane of this environment is covered with textures,
consisting of real images of soil and rows of different types of
crop, collected from a camera mounted on a mobile platform
deployed at the real farm facilities of the University of Lincoln.

To avoid harm to the crop, mobile robots should travel
across the field along the centre line of crop rows only. For our
approach to automate deployment in new fields, a topological
map is created by converting the captured aerial image into a
set of waypoints, connected with traversable edges.

First, we find the locations of crops in the image by colour-
based segmentation. We then determine the principal angle of
parallel crop rows visible in the segmented binary image. We
construct a set of oriented graphs (0 to 180◦) resulting from
the sum of intensities across interval lines perpendicular to
the orientation (Fig. 1). The principal angle α is determined
as perpendicular to the graph with the highest mean peak.
A dense set of waypoints is then placed on the centre of
crop clusters along the intensity profile lines perpendicular
to the principal crop row direction a (Fig. 2, left). The
waypoints are clustered into individual rows and ordered by
their distance along each row, to produce a continuous safe
route for travelling along each separate crop row. Additionally,
a safe turning point is appended to the start and end of each
crop row, parallel to α (Fig. 2, centre).
Next, we remove redundant waypoints from the dense set by
omitting waypoints for which the deviation from the previous
direction of travel is only within some permitted perpendic-
ular distance, l. The result is a sparser set containing only
waypoints in locations where the direction of travel changes
by more than l (Fig. 2, right). This down-sampling procedure
introduces a sparsity-accuracy trade-off and majorly influences
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Fig. 1: Perpendicular lines drawn on the binary image at angle 0◦ (left) and 90◦ (right), along with their oriented graphs of
intensity sums.

Fig. 2: Left: Placement of waypoints (red) on peak clusters,
Centre: dense waypoints sorted into individual rows, Right: a
sparse variant of the same topological map.

the performance of the finished topological map. This trade-off
is evaluated in Sec. III.

III. EVALUATION

A. Experimental Setup

The quality of the topological map was assessed by its
coverage, measured as the proportion of the area in which
crops grow (as manually annotated), that has successfully been
surveyed by a simulated Thorvald robot [9] after it visited
every way point on the topological map once. We report results
for three test scenarios consisting of rectangular fields with
different row crops (basil, lettuce, and onions), and one set
of non-uniform rows with gentle and severe bends simulating
situations where there are environmental obstacles present in
the field. Additionally, we also applied the method to an aerial
image taken by UAV of a real Lincolnshire farm1 (see Fig.
4 and Fig. 5) growing winter wheat for validation of our
approach.

1courtesy of Jonathan Trotter and SAGA Robotics

Fig. 3: Coverage in four scenarios dependent on the maxi-
mum permitted perpendicular deviation l from previous travel
direction.

B. Results

The proposed algorithm deals well with variability in crop
placement and curvature within crop rows. For straight crop
rows (see Onions in Fig. 3), even very sparse maps achieve
near optimal coverage. The approach also translates well to
real-world images (Fig. 4). However our algorithm’s limita-
tions become apparent when the algorithm is applied to a
larger, more irregularly shaped field, in which the general
direction of crop rows changes significantly (Fig. 5). The
principle crop row angle found across the entire image is only
suitable for part of the image. The algorithm fails to pick up
on the crop rows on the left side.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel topological mapping algorithm, which
is robust to curvature within single crop rows. We also demon-
strated its applicability to real-world examples. However, this
algorithm is presented as a baseline for future development.
To map large fields (Fig. 5), we propose to repeatedly apply
the algorithm in a hierarchical quadtree procedure, repeatedly
partitioning the image and dynamically increasing the resolu-
tion in uncertain areas, thus evaluating the principal angles
accurately for subsections of the field. In future work this
system should be extended to create complete semantic maps
of entire farm environments, enabling efficient automated fleet
deployment for the next generation of agricultural robots.

Fig. 4: Dense (left) and sparse (right) topological map gener-
ated from an aerial image of a real farm of wheat crops.

Fig. 5: The algorithm applied to a real world scenario with
changes in crop row direction (Composite image).
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Abstract—In this work, we propose the idea of using dedicated
small spacecrafts carrying multiple robot arms for space debris
removal. Future space missions are expected to have computers
with high computational capabilities. Hence, a model predictive
control architecture is used to generate the control commands.
The small spacecraft in consideration carries two identical 3-
DoF robot arms attached diagonally opposite to each other.
Thus the workspace covered by the robot arm increases. We
show trajectory tracking simulation results of the proposed free-
floating spacecraft to demonstrate the concept.

Index Terms—Trajectory tracking, Model predictive control,
Spacecraft manipulator, Debris removal

I. INTRODUCTION

NASA estimates that there are around half a million pieces
of space junk currently floating around in the Lower Earth
Orbit (LEO) [7]. These debris not only possess a huge threat
to the existing functional satellites but also for any future
missions. Quantitatively, on an average calculated during
2004–12, 72 objects were placed into LEO per year and
this rose to 125 post 2012. It is estimated that the space
environment can be stabilised when on the order of 5–10
objects are removed from LEO per year.

Space environment poses some unique challenges such
as latency in communication, extreme safety requirements
and reduced processing powers due to which the level of
autonomy in decision making is far less than its counterparts
on earth. To enable fully autonomous decision making, future
space missions are expected to operate under autonomy level
E4 according to the European Co-operation for Space Stan-
dardization (ECSS) [5]. This would enable future robots to
have more computational resources for carrying out complex
optimizations which until now are very limited and also to
perform various activities (like space exploration, servicing
and repair.) without any or minimal human intervention.

The main contribution of this work is the idea of using
spacecrafts dedicated for debris removal equipped with multi-
ple robot arms. Also, perform trajectory tracking and control

This work has been carried under the consortium FAIR-SPACE and
obtained funding from UKRI, UK Space Agency and Industrial Strategy.

of two 3-DoF arms attached to the spacecraft using a model
predictive control algorithm. These spacecrafts are assumed
free floating (with no active attitude disturbance control sys-
tem) and hence any motion of the robot arm would induce
a movement on the spacecraft. We present the simulations of
trajectory tracking and control of two robotic arms attached
to the spacecraft using a model predictive control algorithm.
Robotic arms on spacecraft are preferred over other debris
removal methods because it can be easily extended to other
orbital applications like on-orbit servicing and assembly, and
autonomous rendezvous and docking.

II. FORMULATION

A. Kinematic and Dynamics of free-floating spacecrafts

Prior works [6, 9, 10] on the kinematic and dynamic equa-
tions of free-floating spacecrafts are available in the literature.
We provide the main equations here for completeness.

veef = (Jm − JsI
−1
s Im)φ̇m

= J∗φ̇m (1)

where veef , Jm, Js, Is, Im and φ̇m are respectively the
end-effector velocity, manipulator Jacobian, spacecraft Jaco-
bian, 3 × 3 satellite inertia matrix, 3 × nDoF manipulator
inertia matrix and the manipulator joint velocities. Here nDoF
corresponds to the number of actuated joints. This formulation
assumes that the momentum is conserved and is zero at the
beginning. The dynamic formulation can be expressed as

M(φ)φ̈+ C(φ, φ̇) = τ (2)

where τ is the control torque to be applied at the manipulator
joints, M(φ) and C(φ, φ̇) are respectively the mass and
Coriolis and centripetal matrices.

B. Feedback Linearization

Substituting the joint torques, τ with a fictitious input, ατ ′+
β and substituting α = M(φ) and β = C(φ, φ̇) [2] without
loss of generality, we could linearize the eq. (2) and can write
each individual joint variables in state space form as
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ẋ =

[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

]
τ ′

ẋ = A′x+B′τ ′ (3)

where x1 and x2 corresponds to the angular displacement and
velocity of the actuated joints.

C. Model Predictive Control

For our MPC [1] formulation, we use a prediction horizon
of 5 seconds. The formulation can be shown as in eq. (4)

J = xTPx+

∫ T−1

t0

xTQx+ uTRu dt (4)

subject to the constraints

ẋ = Ax+Bτ

x(0) = x0

where x =

[
x1
x2

]
. Here Q (> 0) and R (> 0) are respectively

the time varying state and control cost matrices (usually
diagonal matrices), P is the stabilizing matrix obtained by the
solution of algebraic Ricatti equation at every time instant,
t0, T are the initial and final time respectively, A and B are
obtained by diagonally stacking up A′ and B′ equal to the
number of joints and u is the control input. Interested readers
may refer to [4] for a detailed explanation. Since we are
dealing with a free-floating spacecraft, it is important to note
that only the robotic arms are actuated. The motion of the
spacecraft is due to the reaction forces induced on it from the
arms. Thus the P matrix only acts as a stabilizer to the arm
motion

III. SIMULATIONS

We show simulations done in Mayavi [8] of two identical
robot arms which are attached diametrically opposite to each
other on the spacecraft as shown in Fig 1. The Denavit-
Hartenberg [3] values and the dynamic parameters of the robot
arm used in the simulations are as shown in table I and table II.

TABLE I
DH PARAMETERS OF THE ROBOT ARM

Joint α (rad) a (m) d (m) θ (rad)
1 -π/2 0.0 0.5 θ1
2 π/2 0.0 0.0 θ2
3 0 1.0 0.0 θ3

flange 0 1.0 0.0 θ3

TABLE II
DYNAMIC PARAMETERS

Satellite
Link 0 Link 1 Link 2 Link 3

Mass (kg) 200.0 20.0 50.0 50.0
l (m) 2.10 0.25 2.5 2.5
Ix 1400.0 0.1 0.25 0.25
Iy 1400.0 0.10 26.0 26.0
Iz 2040.0 0.10 26.0 26.0

(a) Home position (b) Start of motion of arm 1

(c) Arm 1 comes back and arm 2
starts motion

(d) Arm 2 reached goal

Fig. 1. Two arm trajectory tracking to reach debris

(a) Joint Angles (b) Control inputs

Fig. 2. Tracking performance of the controller for arm 1

IV. RESULTS

Fig 2 gives the tracking performance of the model predictive
controller for arm 1. The average error in tracking the refer-
ence trajectory for joint 1, joint 2 and joint 3 are respectively
0.03%, 0.18% and 0.2% respectively. The simulation video is
available at https://youtu.be/xeEQBiDpLLg

V. CONCLUSIONS AND FUTURE WORK

From simulations, we have demonstrated the possibility of
having multiple robot arms on the same spacecraft. Further,
it is shown that a model predictive tracking controller could
be developed to track a trajectory. The slight error in tracking
could be attributed to the hand tuning of control gain matrices,
Q and R.

For future work, it would be interesting to see how more
than two arms could be used and simultaneous actuations of
the arms with minimal attitudinal changes to the spacecraft.
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Abstract—This paper describes process of generating a stable
gait for a quadruped robot on granular material such as sand. To
achieve this goal a simulated environment was created, to model
the kinematics and dynamics of the robot. Genetic algorithm
was used as a gait generation technique. The simulation model
of Laikago was built in MATLAB and Simscape. The contact
model between the foot and ground, was based on existing results
from sand penetration testing. The genetic algorithms optimised
the joint space trajectory, to evaluate of the gait performance on
granular terrain. The proposed method required to first create a
simulation constrained to planar motion to simplify the problem.
The 2D gait was then used as the initial guess for the optimisation
in 3D simulation and allowed for creation of an acceptable gait.
The final gait has demonstrated the effectiveness of the proposed
approach for quadruped robot walking on granular terrain.

Index Terms—quadruped robot, genetic algorithm, legged
robot, locomotion

I. INTRODUCTION

The legged robot technology has experienced a large de-
velopment in the last few decades mostly caused by the
development of smaller high-torque motors. Legged robots
have lower efficiency than the wheeled ones, when moving on
flat ground. Their advantage is, however the flexibility when
moving across complex environments [1]. Adaptivity of the
robot to the environment is crucial for its practical utility. The
hardware cannot be tested on all the possible grounds, that
is why there is a need for a quick generation method which
yields an appropriate gait. One of possible methods is central
pattern generation (CPG), Which uses the data from animal
walking patters and generates appropriate gaits using deep
learning [2]. This approach requires gathering and processing
a large normalized data set. The approach chosen in this
paper was reinforcement learning with GA. It uses a simulated
environment to generate gaits and evaluate and them using a
cost function [3].

Laikago is a new affordable quadruped robot, which is lack-
ing the ability of locomotion through complex environments.
It can walk up the hills or on the grass but the ability of
walking on granular material such as sand and mud has not
been demonstrated, even though it is a feature included in the
more expensive quadruped robots such as ANYmal. 1.

1Unitree.cc, [online], Available at: http://www.unitree.cc/, [Accessed 2 Apr.
2019]

II. SIMULATION

A. Quadruped Robot Model

The Laikago model is imported into Simscape. It represents
relationships between the individual links and joints. For the
initial gait generation, the chassis is connected to the world
using a planar joint. This allows the robot to move upwards
and forwards without the risk of falling to the side. This
reduces the degrees of freedom (DoF) from 6 to 3, reducing
the complexity of the problem. In the succeeding simulations
the planar joint is replaced with a unconstrained joint block
to freeing all 6 DoF. This procedure allowed convergence in
the first generation. The results of that could be later used as
an initial guess for the gait generation of the unconstrained
robot, significantly improving the resulting gait.

B. Sand Contact Modeling

A non-linear contact model is chosen for the simulation.
As shown in the eq. 2 the normal force is a function of
penetration depth and velocity. It is dependent on the stiffness
and damping constants which are based on empirical results
[4].

Fn = kzn + cż (1)

An additional feature of the model, is a transition depth, at
which the slope of the force-penetration curve is changing
its gradient. The transition depth is dependent on the sand
properties such as the volume fraction. It occurs because of
the way the normal and shear forces are distributed in sand.

To verify the model, before applying it to the whole robot,
a simulation consisting of one leg fixed at the base, is created.
The leg moves vertically downwards with a constant end-
effector velocity and penetrates the sand. When the ground
contact is detected and the appropriate reaction forces are
applied to the foot. The results of the simulation are shown on
the force penetration graph (fig. 2). The loading case clearly
shows a non-linear nature of the contact. For this simulation
the assumed volume fraction of the sand is 0.6. Based on this
value the transition depth is 0.3 m and the stress/depth value
is equal to 106Nm−3 For one foot, the stiffness constant k,
is equal to 3927N/m [4]. The damping coefficient is set to
250Ns/m. The exponential constant is set to 1.25 [5].
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Fig. 1. Sand model force-penetration curve.

III. GAIT GENERATION

GA is a an optimisation method based on natural selection.
The algorithm creates a generation of solutions, which consists
of the best solutions from the previous generation, a crossover
between them, and random mutations. This allows to check
a wider range of possibilities compared to other optimisation
methods, such as linear regression. It reduces the problem of
misjudging local minima for a global minimum.

The simulated robot is actuated by 6 joint space positions
during one repeating gait period. The Laikago robot has 3
motors in each leg, which means there are 72 variables to
optimise. To simplify the problem, the front and rear pair of
legs are actuated using the same trajectory with half a period
delay between the right-left pairs. This allowed to reduce
the optimisation to 18 variables, significantly increasing the
convergence.

A. Cost Function
Cost function(CF) is used to evaluate the performance of the

generated gait. The value of the cost function is fed back to
the GA. The algorithm uses the value as a variable to optimise.
The main role of the CF is to constrain and push the robot gait
towards a solution which a human would judge as successful.
That’s why the optimisation had to be initially repeated to
find proper penalties and adjust their weights accordingly. The
positive penalties represent what is the goal of the robot gait,
in this case the distance and the time walked without falling.
The negative once are all the constrains put on the robot. They
include: excessive motion of the robot body in the undesired
directions, robot walking off a straight path, aggressive joint
moves and a dynamic walk (when less than 2 feet are on the
ground).

cost = −Π(+ve)/Π(−ve)(2) (2)

Eq. 2 indicates the CF is always negative, to ensure finding
the minimum.

Fig. 2. Snapshots of the final gait movement on sand.

B. Final Gait

The gait was first generated in 2D because the additional
constrains applied on the body simplified the overall problem.
This allows the optimisation to converge faster to stable
results. The 2D trajectory was used as an initial guess for
the gait generation in 3D simulation. That yields much higher
convergence rate than a pure 3D generation. The velocity of
the final gait was 0.4m/s which is 30% of the max speed.
During walking, the robot is slightly drifting to the side from
the straight path. The final gait can be further improved with
adjusting the weights of the CF.

IV. CONCLUSION

The presented GA is shown to generate a stable walking
gait for the Laikago robot on granular material. Gait simulation
can be used as a first step for generation of new gaits. It could
be applied to different robots, or environmental scenarios. In
the next steps a reinforced learning algorithm could optimise
the gait in an experimental setup, using the simulation gait
as a starting point. The contact model should be validated by
performing experiments using the hardware.

The procedure of choosing the right reward system for the
gait evaluation is time consuming, because it is based on
trial and error approach. It might be hard to judge if the
given penalty system is right or the success is caused by
random mutations. It is difficult to avoid reward hacking of
the model and predict the exact outcome. This could be solved
with reward modelling. This approach uses a feedback from
a human, who chooses a preferred solution. The model then
adjust the cost function to satisfy the human choices [6].
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Abstract—This paper considers a mathematical and simulated
analysis of the Cylindabot, a robot design with an adaptive mor-
phology with minimal actuation. The paper compares simulation
against a mathematical model to both understand the dynamics of
such a robot design and also provide a mathematical foundation
for future designs.

I. INTRODUCTION

Two-wheeled robots are a common form of robot design due
to their minimal number of actuators. A more specialised type
is discussed in this paper, having large wheels that encompass
the main body of the robot. The consequences of this are that
the robot will be able to survive falls, handle bumps that are
large compared its size and never be the wrong way up due to
symmetry. Several similar robots have been previously [1], [2],
[3] and [4]. In [4] the robot was able to create a mathematical
model of step clearance.

In this work a set of mathematical inequalities are derived
and values are then substituted into these equations to give
theoretical results. Finally they are compared with results
from V-rep simulations [5]. These mathematical models help
confirm results from simulation, give a theoretical derivation
and can be quickly adapted for different robots.

II. INTERNALLY WEIGHTED WHEELS

For continuous climbing of a slope, the centre of mass has
to be further forward than the point of contact (Fig 1). Once
the robot is rolling up the slope, the motors will keep the mass
at this point so it will continue to climb.

Fig. 1. Wheel on slope to show balance point

r

R
ą sinθ (1)

In eqn. (1) r = radius of center of mass and R = radius of
wheel. If this condition holds, the robot will be able to climb
that slope.

III. TAILED TWO-WHEELED ROBOT

The addition of a tail allows the robot to apply more torque
through its wheels but creates an extra drag behind the robot.
This extra point of contact makes the robot statically balanced
and the position the centre of mass less important. The mass
of the robot Mt is split between M (main body) and m (tail).

For the robot moving on the flat, assuming the robot needs
only to maintain a steady speed, then the friction on the wheel
simply needs to be bigger than the drag of the tail.

µ1M ą µ2m (2)

Fig. 2. Diagram of forces applied to tailed robot. D = drive force of wheels,
G = ground reaction, F = friction

The moments around the two points of contact on the slope
are used to calculate the dynamic requirement. Taking mo-
ments around G1 (Fig 2) and then resolving forces the follow
inequality can be derived. Here γ to represent tan´1p0.5q.

0 ă µ1pM `mqg cos θ´pµ1`µ2qG2´pM `mqg sin θ (3)

where: G2 “
Mg sin θ `

?
5mg cospθ ´ γq

2
(4)

The final inequality (eqn. 3) assumes that it is desirable for
the wheel not to slip. The drive force is set to zero to find the
maximum angle that the wheel could grip while maintaining
speed.

IV. MATHEMATICAL PREDICTIONS

The inequalities above were derived from sound theory but
to obtain appropriate results, realistic parameters need to be
substituted into them (listed in Table I). The most important
being radius of the centre of mass (r) and frictional coefficient
(µ). They are given two possible values each to inform possible
designs.

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

35

https://doi.org/10.31256/Sf6Zi7L



TABLE I
PARAMETER TO SUBSTITUTE INTO INEQUALITIES

Term Value
R 150mm
r R

2
orR

4
µ1µ2 0.5 or 1
m 0.1Mt

Firstly, consider the friction required to stop the robot
sliding down the slope ignoring drive forces. Coulomb friction
acts as a second requirement that must be satisfied in eqn. 5.

tan θ ă µ (5)

θ ă 26.57˝pµ “ 0.5q
θ ă 40˝pµ “ 1q

Without a tail the inequality (eqn. 1) can be used with the
two centres of mass:

0.5 ą sin θ 0.25 ą sin θ
θ ă 30˝ θ ă 14.48˝ (6)

The first of these would not be possible with µ “ 0.5 but
is a theoretical limit for this design if the frictional coefficient
was increased.

With a tail the inequality (eqn. 3) can be used as D Ñ 0:

tan θ ă 4
15

θ ă 14.9˝ (7)

Recalculated with µ “ 1, this gives an angle of θ “ 21.8
with a tail.

V. SIMULATION RESULTS

In this section these mathematical models are compared
with a similar set up created in V-rep simulations. In sim-
ulation, the slope varies from 0 to 45 degrees in increments
of one with 10 runs at each angle. This means that there are
460 runs for each result given in Table II. The results are
estimated by adding together the number of successful runs
and using that to calculate the middle of the region where the
robot fails. Two offset masses are used to set the centre of
mass to different locations in Fig 3.

Fig. 3. Simulation setup. Left: the angle of the slope was varied and the robot
with tail deployed Right: the robot with offset mass and no tail.

A. Comparison of Results

The results from Table II match well to the mathematical
predictions. The mathematical predictions are an upper limit
and therefore having results being just below the predictions
is to be expected.

TABLE II
SLOPES - SIMULATED VERSES MATHEMATICAL PREDICTIONS

Centre
of Mass µ

Target Speed (rad/s) Mathematical
Prediction (deg)1 2 3

Max Slope Angle (deg)

Quarter 1 10 13 14.1 14.8
0.5 10 13 14 14.8

Half 1 20 28 29 30
0.5 20 26 26 26.6

Tail 1 20.9 21.9 21.6 21.8
0.5 13.5 13.8 13.7 14.9

The speed of the robot was input into the V-rep simulation
as a value of intrinsic target velocity. A proportional controller
was used when the tail was not present to balance the robot. It
was tuned to a target speed of 3 rad/s hence the lower speeds
were not as close to the prediction.

The results for the tail were less affected by the target
speed of the robot, this could be because the tail allows the
movement to be more stable. With the results matching it is
promising that they may translate to the real world, and be
useful in simulation-based path-planning models.

VI. CONCLUSION

In this work a mathematical analysis of an internally
weighted two wheeled robot, with and without a tail, was
undertaken. The results from these calculations were compared
to results from V-Rep simulations. Three factors were varied so
that a comparison could be made. Firstly how the robot design
is balanced, where the centre of mass is or whether it has a tail.
The second was the frictional coefficient of wheels and finally
the intrinsic target velocity. A similar approach was used for
steps, however the results did not line up with predictions. The
results from slope mathematical predictions are encouragingly
accurate and could applied to help plan routes in unstructured
terrain.
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Abstract—One of the challenges in collaborative human-robot
object transfer is the robot’s ability to infer about the interaction
state and adapt to it in real time. During joint object transfer
humans communicate about the interaction states through mul-
tiple modalities and adapt to one another’s actions such that the
interaction is successful. Knowledge of the current interaction
state (i.e. harmonious, conflicting or passive interaction) can
help us adjust our behaviour to carry out the task successfully.
This study investigates the effectiveness of physical Human-
Human Interaction (pHHI) forces for predicting interaction states
during ongoing object co-manipulation. We use a sliding-window
method for extracting features and perform online classification
to infer the interaction states. Our dataset consists of haptic
data from 40 subjects who are partnered to form 20 dyads. The
dyads performed collaborative object transfer tasks in a haptics-
enabled virtual environment to move an object to predefined goal
configurations in different harmonious and conflicting scenarios.
We evaluate our approach using multi-class Support Vector
Machine classifier (SVMc) and Gaussian Process classifier (GPc)
and achieve 80% accuracy for classifying general interaction
types.

Index Terms—Classification, Feature Extraction, Haptics,
Physical Human-Human Interaction, Physical Human-Robot In-
teraction, Learning and Adaptive Systems

I. INTRODUCTION

Physical human-human interaction (pHHI) is complex; it
involves good interpersonal coordination and mutual role
adaption Melendez-Calderon et al. [1]. These help humans
to determine how and when their partner’s goals and the
overall interaction states change, allowing them to enhance
their movements Takagi et al. [2]. Learning how and when the
interaction states change in pHHI has important implications
for physical human-robot interaction (pHRI). A robot which
can accurately infer the current interaction state can use that
information to adjust its behaviour to better complement the
human partner during pHRI. In [3], we presented a feature
extraction method to perform online classification for distin-
guishing between interaction states during pHHI as an effort
to understand how two human partners’ interactive states
change over physical collaboration. This paper summarizes our
classification results using the data collected during a dyadic
object transfer using Madan et al.’s behavior taxonomy [4].

II. BACKGROUND

The data was collected using a virtual environment where
human dyads interact through the haptic channel [4]. 40 volun-
teers, who got randomly matched to form dyads, participated
in the study. The dyads collaborated in order to move an object
in between target configuration. Two scenes with various
scenarios that involve rotation and translation movements were
created to provoke a range of different interaction patterns
inducing conflicts and harmony.
Madan et al.’s taxonomy assumes that there are three main
types of interaction in any collaborative task between humans:
T1. Harmonious interaction, T2. Conflicting interaction, and
T3. Neutral interaction. Using this assumption we observed the
frequently emerging patterns from the interaction and classed
them into 6 task dependent interaction pattern classes as shown
in Figure 1. The interaction pattern classes fall under inter-
action type classes as follows: C1: Harmonious translation,
C2: Harmonious rotation with translation, C3: Harmonious
braking, C4: Persistent conflict, C5: Jerky conflict, and C6:
Passive agreement

Fig. 1. Interaction taxonomy proposed by Madan et al. [4].

III. METHODOLOGY

The dataset consists of variable length annotated interaction
segments. In order to perform online classification we set a
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short window to extract a small sequence to be used for feature
extraction. We extract 2 seconds worth of features every 1.5
seconds. The window parameters are empirically set such that
enough data is mined for accurate classification while also
taking into account human reaction times.

A. Online feature extraction

Before we begin with the extraction process, we prepare the
raw timeseries data for processing. We assign every data point
a label that matches the annotation defining the class of the
corresponding interaction segment. As we iterate through the
interactions, our window encounters segments that belong to
more than one class. This can result in ambiguity of the
segment’s class and training on such segments can reduce
the performance of our model. We deal with such ambiguity
by checking the prominence of each class, and drop the
window if the difference between the most prominent and
second most prominent label is less than 20%. From windows
that are not dropped, we extract features using the feature
definitions in [4]. For each window, we compute the mean,
standard deviation, median, and interquartile range for each
of the variables. The feature set contains 48 features, which
are normalized before being used for training and testing.

IV. RESULTS

We investigate online classification performance of Support
Vector Machine (SVMc) and Gaussian Process (GPc) classi-
fiers in two layers of Madan et al.’s hierarchy, namely on both
task-dependent and task-independent behaviours. The perfor-
mance of our model is evaluated using confusion matrices and
by reporting the correct classification rates.

A. Experiment 1: Online classification of interaction patterns

In the first experiment, we investigate how our approach
performs in distinguishing task-dependent interaction patterns.
Figure 2 shows the confusion matrices. Our results indicate
that SVMc reaches a 78.04% accuracy, whereas GPc achieves
an accuracy of 80.79% on the online feature set, with 2.75%
improvement on the performance of SVMc.

Fig. 2. Confusion matrices for SVMc and GPc for the online classification
of interaction patterns

B. Experiment 2: Online classification of interaction types

In the second experiment we look at our model’s performance
for distinguishing task independent behaviors, namely har-
monious, conflicting and neutral interactions. The SVMc and
GPc achieved 83.31% and 83.40% accuracy respectively. The
confusion matrices are shown in Figure 3

Fig. 3. Confusion matrices for SVMc and GPc for the online classification
of interaction types

The following table summarises the previously discussed on-
line classification performances and compares them to offline
classification performance.

V. FINDINGS

Our experiments indicate that haptic data can be used for
accurate classification of human interaction types and patterns
in real-time. We also demonstrate our windowing method
as a viable online feature extraction method for timeseries
classification to identify interaction states during ongoing
physical collaboration. The results indicate that both GPc and
SVMc perform well at online classification of interaction states
with our feature extraction techinque. GPc achieves a slightly
better accuracy but at the cost of much longer training time.

VI. FUTURE WORK

This study acts as a first step to build a proactive robotic
partner, which can assist a human, while being aware of
the interaction state that the partners are in. Our study also
demonstrates that haptic data is extremely useful for physical
interaction inference. In future work we intend to design and
experiment with more sophisticated haptic features, to see how
much useful information can be carried through the haptic
channel. We also aim to combine haptics with other modalities,
such as vision and muscle activity in order to build a more
comprehensive model for interaction and individual user states
and intentions. This model could then be used in HRI to define
proactive robot behaviours and/or role arbitration as described
in [5].
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Abstract—We consider how non-humanoid robots can commu-
nicate their affective state via bodily forms of communication,
and the extent to which this can influence human response.
We propose a simple model of grounded affect and kinesic
expression and outline two experiments (N=9 and N=180) in
which participants were asked to watch expressive and non-
expressive hexapod robots perform different ‘scenes’. Our pre-
liminary findings suggest the expressive robot stimulated greater
desire for interaction, and was more likely to be attributed with
emotion. It also elicited more desire for prosocial behaviour.

Index Terms—Human Robot Interaction (HRI), Situated
Robots, Expression, Kinesics, Embodied Affect

I. INTRODUCTION

Research in the field of social psychology relating to the ex-
pression and interpretation of affect has typically focussed on
facial expressions [1]. Most Human Robot Interaction (HRI)
research tends to reflect this trend, with the generation and
interpretation of facial expressions gaining more attention than
studies of bodily forms of expression [2]–[5]. Furthermore,
much of this work pertains to humanoid morphologies.
This paper describes how animal-like forms of bodily ex-
pression, coupled with a grounded model of affect, could
enable situated robots of varying shapes and sizes to effectively
communicate their needs in a socially evocative manner [6].
Our approach differs from works such as [7]–[9] in that
we have adopted a robot-centred approach [10] by seeking
to model the underlying substrate of emotion and ground
expression in actions that provide adaptive benefits to the
robot.
The topics of emotion, expression and context of interpretation
are referred to throughout this paper, and therefore they will
be introduced briefly below.

A. Emotion

Emotion can be described broadly in terms of physiological
arousal, expressive behaviours and conscious experience [11].
There are two predominant perspectives in terms of the clas-
sification of emotion: discrete and dimensional. Discrete the-
ories, which include [12]–[15], propose that there are a finite
number of distinguishable basic emotions whilst dimensional
models, such as [16]–[18], seek to represent the key aspects
of emotion using a series of continuous axes. The dimensional
model utilised in this work will focus on arousal only, leaving

valence to be inferred by the observer from the environmental
context.

B. Expression

Expression can be considered as the communication of
emotion via facial and bodily movement. Some argue that
such signals are principally aimed at influencing the behaviour
of others within a social group [19], whilst others suggest
they are accurate indicators of underlying emotional state
[12]. Darwin was amongst the first to suggest that expressive
communication may have arisen from mechanisms that pro-
vide adaptive benefits [20]. This work is consistent with the
Darwinian perspective in that we propose kinesic responses
that are primarily intended to provide adaptive benefits to the
robot, rather than attempting to convey the outward aspects of
discrete human emotions.

C. Context

The interpretation of kinesic signals does not occur in a
vacuum, and the broader environmental context will determine
how such information is processed by an observer. Heider and
Simmel first noted the importance of situational context, noting
that this element was seldom considered in studies of kinesics
[21]. Whilst certain characteristics, such as origin of movement
[21] and changes of speed or direction [22], have been shown
to create a perception of animacy, the nature of the robot’s
interactions with its environment will also determine whether
it is attributed with motivations, beliefs or desires: a mode of
interpretation Dennett describes as the Intentional Stance [23].

II. RESEARCH QUESTIONS

In consideration of the points outlined above, the following
hypotheses were defined in order to examine the processes
humans use to make judgements about robots, make sense of
their behaviour, and determine how to respond to them:

• The actions of a robot are more likely to be interpreted
as those of an intentional agent if it is able to express
arousal.

• A robot that is able to express arousal will evoke greater
empathy and emotional response from human observers.

• A robot that is able to express arousal will ultimately
provoke greater desire for prosocial interaction.
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Fig. 1. Diagram illustrating the model of affect employed.

III. ARCHITECTURE

Fig 1 illustrates our model of affect, which is loosely based
on a mammalian stress response. The model features two
hormones, E and C, which broadly correspond to epinephrine
and cortisol in mammals. The first provides a rapid, but brief,
response to relevant external stimuli whilst the second is a
longer-term response to repeated stressful episodes or deficits
in internal variables. These hormones directly modulate five
kinesic properties: stance radius; stance height; step length;
step height and movement speed [24]. Each of these properties
affect the movement of the robot, providing both an adaptive
benefit and an associated cost. For example, faster movement
speed enables rapid response to potential threats, but also con-
sumes more energy and places strain on the robot’s actuators.

IV. EXPERIMENTS AND PRELIMINARY RESULTS

Two related experiments were conducted to test the hy-
potheses outlined above. The first was a qualitative study that
provided detailed insights and identified areas of particular
interest. A second study enabled us to build on these insights
and capture data from a much larger group of participants. The
dependent variables in both experiments were the participant’s
general perception of the robot, their emotional response to-
wards it, their understanding of its behaviour and motivations;
and, ultimately, their willingness to actively assist it. The
independent variable was the robot’s expressive capability.
Therefore a between-group design was adopted for both exper-
iments to facilitate control of this attribute, with participants
being divided evenly into two groups, A and B. The additional
forms of expressive responses were enabled for group B, but
not for the control group A.
In the first experiment, a total of nine participants were asked
to observe a hexapod’s behaviour as it performed in six
discrete episodes, each lasting between two and four minutes.
These episodes were designed to tell a story by creating a
situation for the robot that an observer could interpret and
respond to: an approach that has often been adopted using
human actors [25]. The stories were also intended to be
comprehensible from the situational context alone, enabling
them to be usable for both groups. After each episode, a
brief semi-structured interview was conducted, during which
participants were asked to describe what happened during the
scene, any particularly key moments, how they felt about the
scenario and the robot’s behaviour and whether they would
have liked to have interacted with either the robot or its

TABLE I
TABLE SUMMARISING THE PRELIMINARY RESULTS OF OUR SECOND

(N=180) EXPERIMENT

Theme Group
Yr4 A Yr4 B Yr5 A Yr5 B Yr6 A Yr6 B

Attribution of Emotion 1.7% 8.6% 9.5% 12.9% 9.8% 15.5%
Empathy Toward Robot 0% 2.6% 0.9% 4.3% 14.3% 16.4%
Intentional Stance Adopted 11.2% 14.7% 17.2% 30.2% 37.5% 45.7%
Interaction Envisaged 56.0% 67.2% 69.8% 74.1% 78.6% 84.5%
Prosocial Disposition 26.7% 29.3% 22.4% 36.2% 27.7% 52.6%

environment. These interviews were intended to ascertain the
mode of interpretation they had adopted when watching the
robot, their feelings towards it and whether they would have
liked to intervene in order to assist or hinder it.
The results of this study indicated that the expressive robot was
attributed with emotion roughly three times more frequently
than the non-expressive one, and that expression also appeared
to significantly influence desire for interaction. However, we
found no evidence of a link between expression of arousal and
desire for prosocial behaviour on the part of the observer.
Our second experiment was conducted at a local primary
school. A total of 180 children took part, selected from year
groups 4-6 (age range 8-11). The event was run over six days,
with a single class of approximately 30 children taking part
each day. As with the previous experiment, the participants
were asked to watch a hexapod robot perform a number of
‘scenes’. Group B observed the robot with its arousal model
enabled, whereas the control group A viewed it with the
model dormant. Videos were used to ensure repeatability.
Between each scene, the children were asked to complete a
brief questionnaire consisting of eight questions. The first five
were multiple choice questions that were designed to establish
the participant’s broad disposition toward the robot, whilst the
remaining three requested short written responses describing
how the video made them feel, what they would have liked to
do if they were in the video and why.
Our preliminary findings, summarised by Table I, suggest
that group B participants were much more likely to adopt an
intentional stance when describing the behaviour of the robot,
and more likely to experience emotional empathy towards the
robot. Consequently, they were far more likely to suggest
prosocial forms of behaviour intended to help the robot when
asked how they would have liked to have interacted with it. A
comprehensive analysis of the results is currently underway.

V. CONCLUSIONS AND FUTURE WORK

To date, our work has focussed on kinesics in the context
of open-loop interaction: participants describe how they would
like to interact with the robot, but there is no continuous feed-
back cycle. Future work will close the loop by engaging partic-
ipants in a shared task that requires continuous interaction with
the robot. This task will be designed to create tension between
the robot’s need to maintain homeostasis and the participant’s
desire to achieve other objectives. This sets the stage for us
to determine how bodily forms of expression can influence
the willingness of humans to accommodate the robot’s needs,
even when they may conflict with their own.
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Abstract—This research aims to optimise soft fin ray robotic 
fingers by finding relationships between design parameters and 
the performance of the fingers using simulation and eventually 
experimental validation. The design parameters that were 
chosen to optimise were the rib angle increments of the fingers. 
This was done by simulating an object being displaced in the x-
direction moving into the finger to simulate gripping, then being 
displaced in the y-direction out of the gripper to simulate 
slipping. To measure the gripping performance of the fingers, 
the deformation of the fingertip, as well as force reaction of the 
finger were recorded. This paper includes initial results from 
the conducted simulations. 

Keywords— soft robotics, optimisation, simulation, FEA 

I. INTRODUCTION

This project involves the optimisation of a soft Fin Ray 
robotic fingers using Finite Element Analysis and 
experimental validation. The Fin Ray Effect® is based on the 
deflection of fish fin ribs that allows them to conform to 
different shapes [1]. Designing robotic fingers based on the 
Fin Ray effect enables passive adaptation to the shape of a 
grasped object which increases the contact area for a more 
stable grasp [2]. Creating Fin Ray fingers from soft materials 
enables the picking of delicate objects that are could 
otherwise be damaged by rigid fingers [3]. This has many 
applications especially in the agriculture/food industry which 
involves moving or harvesting delicate produce with varying 
delicacy and shapes. The fingers need to be able to adapt to 
the shape of the target object while applying the minimal 
amount of force that is necessary so as not to damage the 
object. They also need to be able to exert larger forces for 
denser targets or for harvesting tasks. This is where the 
concept of layer jamming, which is the friction between 
deforming ribs, is used to create variable stiffness in the soft 
material fingers [3]. For this reason, the aim is to optimise for 
both shape adaptation and force generation while still 
allowing minimal contact forces for delicate objects by 
changing key design parameters of the fingers. 

II. LITERATURE REVIEW

A. Soft Robotic Grippers
Soft robotic grippers have many advantages over rigid-

body robotic grippers, one such advantage is their ability to 
handle delicate objects without damaging them. Soft grippers 
are usually constructed of flexible materials that allow them 
to conform to many different shapes in different 
circumstances. With more demand to automate agricultural 
and industrial processes there is a need for manipulators that 

are adaptable and can safely handle delicate objects, soft 
robotic grippers are capable of filling these roles [4].  

B. Hyperelastic Materials and Mathematical Models
Modelling of the materials used for soft robotic grippers is

very important as it allows researchers to quickly and 
efficiently test changes to the geometry or parameters of the 
grippers without having to produce a physical copy and test it 
experimentally. This research uses Ninjaflex which is “a 
thermoplastic polyurethane” [5]. It is a material used in FDM 
(Fused Deposition Modelling) 3D printers, and  is a good 
candidate to create soft grippers due to its material properties
that offer flexibility and strength. 

Previous work showed that only two pairs of parameters 
are needed to render the measured experimental data in a 
proper way [5] using the Ogden’s material model. The values 
that were found were then applied to a simulation software and 
the results that were produced were consistent with the 
experimental data [5]. This was the model used for the 
simulations in this research. 

C. Fin Ray Robotic Fingers
The Fin Ray effect works well for passive grippers, these

only require power to open and close and not to sustain grip 
on an object. Previous research has shown that these fingers 
are well suited to picking up “convex and/or light” objects [6], 
however, struggled with thin, heavy objects. It has also been 
shown that a gripper using fin ray fingers was much more 
effective at holding objects when it was orientated 
perpendicular to the ground rather than parallel two it, being 
able to hold double the weight. Changing the geometry of the 
fingers, such as the angle and position of the ribs, effects the 
force generation and shape adaptation of the finger. Previous 
research has shown that when these ribs are orientated in 
specific ways friction between the ribs can occur causing an 
increase to the stiffness of the finger and in turn increases the 
force generation of the finger [7]. This is called the layer 
jamming effect and presents opportunities for fin ray fingers 
to be able to have variable force generation depending on the 
amount of layer jamming occurring in the finger [7]. Further 
work was done looking at using a fixed increment when 
increasing rib angle as well [8]. 

The contribution of this research is to explore the effect of 
rib angle increment variation on force generation and tip 
displacement of the finger. A particular interest here is to 
evaluate how the angle increments affect the slippage of a 
grasped object out of the fingers.  
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III. FEA SIMULATION

The initial stage of this research required many 
simulations to be run to attempt to find the most important 
design features that have the largest impact on the targeted 
performance characteristics, those being shape adaptation and 
force generation. The incremental changes in rib angle were 
one of these such design features found to influence the 
performance of the finger. A twelve ribbed finger had been 
used for previous research with a fixed angle increment. It was 
not possible to optimise for the twelve rib angles 
simultaneously this finger due a limitation of ANSYS 
software in relation to the number of input parameters. 
Therefore, the geometry was reduced to only eight ribs to 
simplify the optimisation process. The original increment of 3 
degrees between each rib gap was used as the initial angle and 
a boundary of three degrees was applied for each rib angle to 
attempt to optimise the finger. The simulation involves a 
circular object being displaced in the x-axis into the centre of 
the finger (stage 1), then being displaced in the y-axis up out 
of the finger (stage 2). This was intended to simulate the finger 
grasping an object then having the object slipping out from the 
finger.  

Figure 1: Shows (a) before deformation with labelled design 
parameters tabulated below (b) Stage 1 in the x-direction and (c) 
Stage 2 in the y-direction. 

The new angle increments found by the optimisation can 
be found in Table 1. They didn’t follow a regular progression, 
but rather tended to remain around 3° ±0.5°. There was an 
exception as the increment between ribs 2 and 3 was over 1.5 
times larger than any of the other increments. This may be due 
to the contact of the object with the finger, but further research 
is needed to determine the true cause of this. 

IV. RESULTS AND DISCUSSION

The maximum force reactions in the x and y-axis were 
measured during both stages of the simulations so that there 
could be a comparison made between the original design and 
the optimised design to highlight improvements. Table 2 
shows the results of the two simulations during the first stage 
and the percentage difference between the values found. Table 
3 shows the same during the second stage. 

These results show that changing the rib angles can have a 
large effect on the performance of the fin ray finger. Every 
aspect of the finger performance was improved by the 
optimisation except for the force reaction in the y-direction 
during the first stage of the simulation. An increase of 22% in 
the directional deformation of the tip of the finger in the x-axis 
during the first stage shows a large improvement in the fingers 
ability to grasp an object more securely and reduce the 
likelihood of the object slipping. There were also 
improvements in the force reaction on the object in the x-axis 
during both stages of the simulation showing a potentially 
firmer gripping finger. Finally, there was an increase of 4% in 
the force reaction in the y-axis during stage 2 of the 
simulation. This suggests the finger would be less susceptible 
to having the object slip out of its grasp. 

V. CONCLUSIONS AND FUTURE WORK

The optimised geometry of the finger was shown to 
improve shape adaptation as well as produce small 
improvements in the force applied in the y-axis during the 
simulation of object slippage. Possible future work that could 
be done on this subject is researching the effects of using 
variable spacing between the ribs to continue to maximise the 
force generation and shape adaptation of the fingers. 
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Table 3: Simulation results for object displacement in the y-axis 

Table 1: This shows the optimised increment between each of the 
ribs 

Alpha 
1 

Alpha 
2 

Alpha 
3 

Alpha 
4 

Alpha 
5 

Alpha 
6 

Alpha 
7 

Angle 
Increment 
(degrees)  3.33  5.39  3.02  2.99  2.53  3.43  2.95 

Deformation 
of Tip Yaxis 
(mm) 

Deformation 
of Tip Xaxis 
(mm) 

Maximum 
Force 
Reaction X 
axis (N) 

Maximum 
Force 
Reaction Y 
axis (N)

Optimised  7.9272  3.1923  2.8885  0.1714 
Percentage 
Difference  4%  22%  11%  2% 

Table 2: Simulation results for object displacement in the x-axis 

Deformation 
of Tip Yaxis 
(mm) 

Deformation 
of Tip Xaxis 
(mm) 

Maximum 
Force 
Reaction X
axis (N) 

Maximum 
Force 
Reaction Y
axis (N)

Optimised  -0.0063581  -0.0009634 2.4732  0.35513 
Percentage 
Difference  2%  52%  13%  4% 
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A Cable-based Manipulator for Chemistry Labs
Lupo Manes, Sebastiano Fichera, David Marquez-Gamez, Andrew I. Cooper, Paolo Paoletti

Abstract—This paper presents the design of an end-effector
for handling of supplies commonly found in chemistry labs.
The system uses a cable loop capable of providing an effective
grasp of any prismatic or cylindrical object, making it ideal
for handling vials and other containers commonly used in
laboratories. When compared to the more common parallel jaw
gripper design, the proposed cable based end-effector is able to
handle a larger variety of objects without interfering with the
surrounding objects even in a crowded environment (minimal
footprint). The payload capability of the gripper has been tested
on a load test apparatus with different materials, demonstrating
its effectiveness.

Keywords—Robotic Gripper, Cable-based Manipulator, Chem-
istry Automation

I. INTRODUCTION

The current trend in industry and research is pursuing
effective human-robot interaction and cooperation, where the
two would participate to the same workflow both efficiently
and safely. This would make for easier set up and inspection
of automated plants, since the safety features and procedures
would be embedded in the robotic system. Currently, robot
manufacturers provide cooperative robots in the form of
low-power robotic arms (<35kg max payload), sometimes
mounted on mobile bases. These systems come equipped with
collision detection and avoidance and compliance features
to avoid harming humans or damaging themselves or the
surrounding environment [4].

Chemistry research, and more specifically material discov-
ery, relies on exploring a large number of chemical combi-
nations. Artificial intelligence trained for the task can skim
most combinations through simulation and narrow down the
possible solutions to a few hundred composites. This software
combined with a robotic system makes a robotic scientist
that can run the reactions in a lab and has provided some
great results [1]. Current systems require a highly controlled
environment and can only perform specific tasks[2]. As a
result, a significant amount of resources goes into the design
and possible modifications of a physical system. The creation
of a robot that can work in any chemistry lab with the available
supplies is extremely appealing to reduce the set-up costs of
chemistry automation and improve its accessibility.

In order to be effective in an environment with variable
features, like position of supplies or layout of the lab benches,
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the robotic system needs to be extremely robust. Specifi-
cally, when it comes to manipulation, a balance needs to be
struck between computation (the software) and embodiment
(the hardware). Computation has traditionally been the main
focus for manipulation task because of the quicker turnaround
when compared to mechanical design. However, thanks to the
advance in rapid manufacturing technology, the hardware can
nowadays be updated at similar pace to the software [5]. This
has led to further exploration of potential mechanical designs
in an effort to find the right tool for the job instead of finding
a workaround for sub-optimal equipment. This is particularly
true for the development of end-effectors, where many of
the newer designs have become better adapted for their work
environment [3]. The end-effector proposed in this paper aims
to outperform current designs in their flexibility, footprint and
ease of grasping. The use of a cable loop mechanism allows
for all of these requirements while also keeping costs low.

II. PROPOSED DESIGN

The proposed design, shown in Fig. 1, consists of a main
body containing the drive components and a vertical beam
(finger) with a cable loop at its end. A 0.5 mm polyamide cable
is used to envelop objects and pull them against the finger. To
keep the object aligned to the end-effector, the contact surface
on the finger is concave. One end of the cable is fixed at the
end of the finger while the other can be pushed or pulled by a
two wheel arrangement, shown in Fig. 2, with wheel 1 driven
by a geared DC motor and wheel 2 used to keep the wire in
contact with wheel 1. Both wheels use a 3D printed flexible
material (NinjaflexTM) external cover with a V groove to better
grip and feed the cable. The cable is fed into a channel that
drives it to the desired position.

Figure 1: Proposed end-effector (left) and a bottom view of
the grasping mechanism (right).

All the mechanical components for the design have been
3D printed using PolyLactic Acid (PLA) for rigid components
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and NinjaflexTMfor the flexible ones. This made it possible to
create channels for the cable to go through inside the structural
components.

Figure 2: Cable drive mechanism top view and section. Drive
wheel (1), idler (2) and cable in blue in the section view.

An embedded capacitive force sensor (SingleTactTM10N)
mounted behind the contact surface collects information about
the grasping force, and a rotary encoder mounted to the
motor shaft is used to estimate the radius of the cable
loop. Two PI closed-loop control systems, implemented on
an ArduinoTMMega board, are used to control position and
torque of the motor connected to the cable loop.

III. TESTING

The system has been tested by grasping cylindrical objects
of different diameters attached to a load cell to check the
maximum payload weight, see Fig. 3.

1 Manipulator
2 Linear Axis
3 Vial
4 Clamp
5 Load Cell

Figure 3: Assembled test rig.

The tests were conducted with both glass and plastic cylin-
drical objects of different diameters and materials clamped to
the load cell, performing 5 runs for each test sample to insure
reliability. For each test, the cable loop was tightened around
the cylinder until a grasping force of 5N was registered by the
sensor in the end-effector. The drive wheel was then locked in
place and the end-effector was slowly lifted using the linear
actuator of the load test apparatus shown on the right of Fig.
3.

The results of these tests are summarised in Fig. 4. The end-
effector could lift more weight with plastic specimens because
of their higher surface roughness and therefore extra friction.
In spite of the lower friction of glass, the end-effector was still
able to reliably lift 400g of payload. Tests with both materials
show no significant direct correlation between diameter of the

object and weight lifted, which suggests that the design could
prove to be highly versatile. The maximum load exceeds the
requirements for use in a chemistry lab where most vials will
weigh less than 100g.

Figure 4: Maximum weight lifted as the diameter of the
samples increases. Error Bars represent one standard deviation.

IV. CONCLUSIONS

The proposed end-effector design provides a small foot-
print and can handle variable payload sizes, thanks to an
unconventional grasping mechanism. The cable loop design
compromises on the type of shape the system can grasp but has
potentially unprecedented flexibility for payload size. Thanks
to its small dimension the mechanism could be easily fitted to
existing 6 DoF Robotic arms with good reach and dexterity.

To improve its reliability, the prototype will require better
materials and electromechanical components and more thor-
ough testing. Moreover, software integration with a robotic
manipulator can be developed to allow for testing in a realistic
environment.
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Abstract—To enable wider experimental uptake and build
interest in autonomous precision agriculture, we present a low-
cost, open source hardware and software platform for automated
precision seed planting, for use by researchers and practical agri-
hackers. The robot platform is about to plant seeds with higher
within-row precision than conventional systems, and using high
end Global Navigation Satellite System (GNSS) is able to store the
geospatial location of each seed to accuracies sufficient to enable
revisiting of plants during growth. It can also operate with lower
cost GNSS using a swappable interface for other applications.
We provide software up to the level of pose-to-pose driving using
Dubins paths. The robot is based on a low-cost closed-source
commercial off the self (COTS) vehicle, low-cost COTS seeder,
and Raspberry Pi, with our open hardware design showing how
to link them to each other and to the software. The hardware
and software is being open-sourced at https://github.com/Harry-
Rogers/PiCar as part of this publication.

Index Terms—Agriculture, Raspberry Pi, GNSS, Mechatron-
ics, Python, Raspbian, Open Source

I. INTRODUCTION

Automated precision agriculture is becoming important
around the world due to increased population and demand
for food, declining fuel reserves, and climate change [1].
Currently there are many solutions to automate agriculture that
involve harvesting crop, spraying pesticide, spraying weeds
and planting seeds. There are many solutions like the IBEX
robot that sprays weeds [2], the Rubion robot that picks
strawberries1, and Fendt’s project MARS robot2 that can
monitor and accurately document precise planting of corn.

However, these are expensive, large-scale systems, which do
not easily allow smaller scale innovators such as researchers,
farmers in developing countries, and the maker community,
to experiment and extend their designs. Innovation in both
farming practice and engineering design often emerges bottom
up from these communities. Therefore, this paper makes such
a system available to the community.

Like most open source hardware (OSH), the system is based
on off-the-shelf components which may not be OSH them-
selves. It combines low costs COTS vehicle3, seed planter, and
embedded computer and provides physical build instructions

1Rubion robot (Octinion; http://octinion.com/products/agricultural-
robotics/rubion)

2Fendt’s project MARS robot (Fendt; https://www.fendt.com/int/fendt-
mars)

3COTS vehicle (Sunfounder Ltd; https://www.sunfounder.com/smart-video-
car-kit-v2-0.html)

and software to run. It can plan and control an efficient point-
to-point route including speeding up on long straights and
slowing to control turns. Using a GNSS module it stores
the Geographic Information System (GIS) coordinates of each
seed planted so the system can return to it. This system is
cheap enough to be reproduced at scale to create swarms that
can complete many processes in a very small amount of time
the total cost of the system is shown in table 1. Seed planting
is chosen as a first task because even current agri-business
systems such as large tractor driven drills are not able to plant
seeds at this precision, with spacing between seeds in a wheat
crop typically varying by several centimeters. The system is
legal to operate autonomously under the guidelines given by
[3].

II. SYSTEM DESIGN

A. Open source Hardware

The main components consist of a Raspberry Pi 3 model B+,
Robot HATS3 a hat board that is on top of the Raspberry Pi, a
PCA9865 [4] board for controlling servos, a TB6612 [5] board
to control the DC motors and a camera for the system to see.
Alongside this, a COTS seed dispenser [6] and GNSS module
[7] have been added to the kit to complete the functionality for
the project. Robot HATS sends power to the other boards as
well as signals to turn the servos to steer or move the camera.
PCA9865 sends signals to the servos to steer the car as well
as pan or tilt the camera, it also sends signals to the TB6612
board to either turn the wheels or not. TB6612 sends signals
to the DC motors depending on what is needed from the other
boards. The seed dispenser is modified to be shorter therefore
making it lighter it is attached with glue. Fig. 1 shows the built
system. Table 1 shows the per-item cost, the system overall
costs £206.96.

Fig. 1. Built system
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TABLE I
PER-ITEM COST

Item Category Cost(GBP)
COTS Robot Material 99.99

COTS Seed dispenser Material 14.18
Raspberry Pi Material 32.75

Power Adapter Material 8.29
SD card Material 5.29
Batteries Material 16.99

Battery Charger Material 11.99
GNSS Module Material 12.48

B. Open Source Software
When turning the system on, the Raspberry Pi starts a

script using the Django (https://www.djangoproject.com/) web
framework so that an application on the user’s device, such as
a smart phone, can connect and operate the system. There are
two main areas of software: movement and data.

1) Movement: Pose to pose path planning and control is
provided, which can be used to plant seeds at regular intervals
along one or more paths. Planning operates by using a Dubins
path algorithm. There are three steps to completing this path:
a starting turn, going straight, and ending turn. The Dubins
[8] path is calculated by creating two arcs around the start
and end point that are connected by the shortest straight line
between them. The modification over the standard Dubins
method is that during the straight, the controller speeds up to
its maximum speed to reduce the time taken to be completed.
During curves the controller slows down to its minimum speed
to reduce skidding.

2) Data: The data collected from the GNSS module con-
tains GIS coordinates of where seeds have been planted. The
seeds’ location is found by calculating the circumference of
the dispenser and its location relative to the robot center. The
open hole that dispenses the seed is at the top each time the
system starts a new task. This is so that when half a rotation is
completed the seed is dispensed. National Marine Electronics
Association (NMEA) data collected from the GNSS module
is processed and currently stored in CSV format though we
plan to switch to a GIS database such as PostGIS.

III. TESTING AND RESULTS

A. Design of experiment
An experiment was carried out to test whether or not

the system is effective at planting seeds and recording their
accurate GIS coordinates. In the experiment, the system must
drive to a pose that is 6.8m away using a Dubins path. Along
this path it must plant 20 seeds, at regular spacial intervals,
and record their GIS coordinates. It is assumed that the system
will drive over a cut trench and the seeds will then be covered
after it completed its task. Whilst on the path it must also
speed up when driving straight and slow down when turning,
without affecting the seed spacing.

B. Results
All 20 seeds were planted. The system travelled 11.2m in

total to get to the pose that was 6.8m away because of the

Dubins Curve requirements. The planting rate was 1.1 seeds
per second. Two seeds were planted at both of the first and
second points due to traveling slowly. Seeds also once leaving
the seed dispenser were moving at a rate that could cause them
to roll or bounce off of the ground. Fig. 2 shows where each
seed was planted on the Dubins path. Planted seed ground
truth locations where then measured manually with a ruler
and found to have a standard deviation of 139mm from their
intended and logged locations. Minimum distance between
seeds was on average 399mm apart from each other. The top
speed of the system was 0.49m/s and the minimum speed of
the system was 0.26m/s. The average speed the system was
travelling at was 0.39m/s. The coordinates on average were
8.23m away from the actual location, before differential GNSS
correction. The system was also able to do the path in reverse
completing the path with the same speeds.

Fig. 2. Mapped seeds

IV. CONCLUSION

The observed seed planting accuracy of the system was
139mm. This was due to seeds bouncing off the ground as
the trundle was moving very quickly on the straight distance
therefore causing seeds to move from their original planting
point. One way this system could make farming more efficient
is if a swarm was created and the trundle size was reduced.
This would mean that multiple rows could be completed at
once. The system plants much less seeds per second than a
large tractor system, but as it is a system it does not require to
be paid by the hour as labourers would it is also open source
so everyone can use it. However, some seeds at the earlier
locations were not planted individually but were dispensed
in groups in error, due to the low speed of the robot when
setting off. Minimum distance between seeds was too large
(399mm) for crops such as wheat, but could be reduced by
using a smaller trundle or trundle gearing. The differential
GNSS accuracy is such that driving the robot to revisit specific
plants appears possible for seed spacings up to 139mm. The
system can follow the exact path taken in reverse to do this.
The results suggest that the system would be a useful test bed
for research and hobbyist platforms and if scaled up to swarms
could make seeding and other operations more efficient. As
an open source hardware and software project, we welcome
future contributions from the community.
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Abstract—For controlling Unmanned Underwater Vehicles
(UUVs) in deep water, Proportional-Integral-Derivative (PID)
control has previously been proposed. Disturbances due to waves
are minimal at high depths, so PID provides an acceptable level of
control for performing tasks such as station-keeping. In shallow
water, disturbances from waves are considerably larger and thus
station-keeping performance naturally degrades. By means of
simulation, this letter details the performance of PID control
when station keeping in a typical shallow-wave operating envi-
ronment, such as that encountered during inspection of marine
renewable energy devices. Using real wave data, a maximum
positional error of 0.635m in the x-direction and 0.537m in the
z-direction at a depth of 15 m is seen whilst subjected to a wave
train with a significant wave height of 5.404m. Furthermore,
estimates of likely displacements of a Remotely Operated Vehicle
(ROV) are given for a variety of significant wave heights while
operating at various depths. Our analysis provides a range of
operational conditions within which hydrodynamic disturbances
don’t preclude employment of UUVs and identify the conditions
where PID-controlled station keeping becomes impractical and
unsafe.

Index Terms—station keeping, PID, ROV, underwater robotics,
shallow water, thruster dynamics.

I. INTRODUCTION

Offshore industries are becoming increasingly interested in
operating with a higher degree of autonomy than currently
available. The offshore energy and marine renewable energy
sectors, in particular, need to perform systematic maintenance
operations and accurate sensor deployment in order to improve
structure survivability and reduce overall running costs of the
plant [1], [2]. Unmanned Underwater Vehicles (UUVs) have
previously been deployed for inspection and maintenance, but
are often not equipped for undertaking more complex missions
especially close to the sea surface. The task of operating in per-
turbed sea states remains largely unsolved due to the difficulty
of enabling safe station keeping (holding a stationary position)
of the vehicle when operating in proximity with submerged
structures. This prevents any systematic maintenance operation
of offshore structures as well as accurate surveillance of any
submerged environments [3]–[5].

This letter aims to investigate the use of one of the most
classical feedback control methods, Proportional Integral-
Derivative (PID) control, for station keeping in these shallow

This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/R513209/1], the Research Council United
Kingdom (RCUK) and the ORCA Hub.

water environments. The dynamic response of a vehicle subject
to varying wave disturbances is tested via numerical simula-
tions. The performance of the controller is evaluated when
the vehicle is subjected to a typical, realistic wave field by
monitoring the positional error in the surge, x, and heave, z,
directions. Upon evaluation, results confirm that utilising PID
control for station keeping yields excessive positional error
outside of a narrow band of wave disturbances and operational
depth. Therefore, an alternative control method is required to
improve the reliability and accuracy of UUV station keeping
to assist in the continued drive for fully automated operation
and management of offshore structures.

II. MODELLING

The simulated scenario entails a vehicle located at varying
depths D within a water column of depth Dw = 50m and
attempting to station keep whilst subjected to an oncoming
wave train of varying significant height Hs. The wave field
simulated in this work was taken from [6] and is representative
of a typical wave field seen at the National Northwest Marine
Renewable Energy Center (NNMREC) North Energy Test
Site (NETS) and correlates with data collected by a buoy
deployed in the area; the composition is formed utilising
the fundamentals of Airy Wave Theory [7], [8]. The particle
velocities and accelerations at the vehicle location are then
deduced using widely detailed wave theory [9] and input as a
disturbance to the vehicle dynamics, discussed below.

The vehicle modelled in this work is the SeaBotix vLBV300
Remotely Operated Vehicle (ROV) [10], a typical type of
underwater vehicle which is controlled by a pilot; in this
work the vehicle is controlled autonomously. Only the surge
and heave motions are considered as this letter aims to
provide evidence for the requirement of more advanced control
methodologies. Following the methodology outlined in [11],
the vehicle is modelled as a rigid body with 2DOF whilst
assuming the vehicle is neutrally buoyant and neglecting the
influence of the Coriolis effect. The dynamic equation can then
be simplified and expanded to give:

mdv̇a +mav̇r −
1

2
ρfAiCDvr|vr| = T (1)

where md and ma are the dry and added mass terms respec-
tively, va = (vax, vay) and vr = (vrx, vry) are the absolute
and relative velocity of the vehicle with respect to the water,
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TABLE I
THRUSTER MODEL PARAMETERS FOR THE SIMULATIONS UNDERTAKEN IN

SECTION III

.

Parameter Nomenclature Value
Thrust Co-efficient KT 0.464
Propeller Diameter D 0.1 m

Time Step ∆t 0.2 s
Motor Time Constant Tm 0.1 s

Drag Coeffcient, x CD,x 0.84
Drag Coeffcient, z CD,z 1.06

Added Mass, x ma,x 8.1 kg
Added Mass, z ma,z 36.7 kg

Fig. 1. A 100s segment of the wave field generated using the parameters
detailed in [6] and the displacement of the vehicle caused by this wave field
when the vehicle is attempting to remain stationary at a depth of 15m.

ρf represents the density of the fluid (in this case sea water),
Ai represents the area of the incident side to the flow, CD

represents the drag coefficient and T represents the thrust
produced by the propellers.

To accurately describe the behaviour of the vehicle and the
controller performance, a thruster model was utilised based
on [11], [12] which considers the Bilinear Thruster Model in
conjunction with a reduction term, approximating the propeller
angular velocity as a first order system. This reduction term
accounts for the effects of the fluid flow through the propeller;
this model is also utilised in [13], [14] and reads:

T = KT ρfn|n|D4 − 1

3
vfρfD

3|n| (2)

where Kt, n, vf and D respectively represent a thrust constant,
the propeller angular velocity, the fluid speed into the propeller
disk and the propeller disk diameter.

III. RESULTS

Simulations were performed over a 240s temporal segment
and the magnitude of the positional error was recorded. An
example of the time history of the vehicle response while per-
forming station-keeping at D = 15m (i.e. for D/Dw = 0.3)
and subject to a wave train with a significant wave height of
Hs = 5.404m (i.e. for Hs/L = 7.72) is presented in Fig. 1.
From this simulation, the maximum positional error witnessed
was 0.635m in the x-direction and 0.537m in the z-direction.

A series of test cases were performed using the same wave
train but for 0.075 < D/Dw < 0.9 and 0.25 < Hs/L <
3, where L = 0.7m represents the reference dimension of
the vehicle. Maximum positional error in surge and heave are
reported in Fig. 2 and 3 and it is observed that for Hs ≈
3L then the positional error approaches 0.4m at low depth.
Fig. 2-3 highlight the existence of a region of D/Dw and
Hs/L values where the profile of error displacement shows a
markedly non-linear trend with a steep gradient.

Fig. 2. Maximum error in the surge, x, direction when subject to the wave
field in Fig. 1 over a range of Hs/L and D/Dw.

Fig. 3. Maximum error in the heave, z, direction when subject to the wave
field in Fig. 1 over a range of Hs/L and D/Dw.

IV. DISCUSSIONS & CONCLUSIONS

If the positional error shown in Fig. 1-3 is considered, the
results show that in a typical shallow water environment the
level of control offered by PID is unacceptable. All cases
operating near the free surface correlate to an increase in
positional error as the effects from the waves are increased
significantly. Similarly, if the depth is held constant and the
wave height is increased, the positional error increases for the
same reason. For missions which involve precise manipulation
or inspection of fine-scale structural elements, the positional
error estimated through these simulations is too large and
therefore using PID control is unsuitable.

For this reason, an alternative more advanced control
method is required which can offer higher performance; non-
linear model-based PID has the potential to substantially
improve performance without increasing the required com-
putation power too drastically [15]. Furthermore, the use of
Model Predictive Control (MPC) is envisioned; the preliminary
work of [6] will be extended to include additional DOF and
subsequently a controller will be developed and tested at the
FloWave facility at the University of Edinburgh [16], [17].

An alternative solution is to develop a suitable manipulator
to constrain the motion of the vehicle when subjected to
wave and current disturbances. Unlike the MPC approach, this
would rely on the capability of hardware to simply withstand
the forces exerted on the vehicle, but would require a structure
to grip onto. Hence, the MPC approach is preferred.
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Abstract—The research behind this article is motivated by
robotic operations in radiologically contaminated environments,
notably for nuclear decommissioning. However, the experi-
ments reported within are based on a recently reconfigured,
hydraulically–actuated, dual manipulator robot that is being used
for R&D into both tele–operation and autonomy in a non–active
laboratory setting. One element of this research concerns the
development of novel control systems to address time–delay and
deadband uncertainties. The article briefly discusses some pre-
liminary results and plans in this regard. Recent improvements
to the hardware demonstrator are also described.

Index Terms—nuclear decommissioning, hydraulic actuators,
deadband, time–delay, uncertainty

I. INTRODUCTION

A significant number of nuclear facilities around the world
have reached the end of their useful life and hence are in
the process of decommissioning. Since it is environmentally
unfriendly and dangerous for plant workers, many decommis-
sioning tasks are accomplished with robots, for which direct
tele-operation is standard [1]. With constrained spaces and
highly-contaminated facilities, fully autonomous solutions are
unlikely to be considered safe or cost-effective in the near
future. Nonetheless, with the advent of more efficient and
robust embedded electronics and sensors, there is significant
interest in semi-autonomous capabilities [2]–[4].

The present article concerns a previously developed dual-
manipulator robotic platform [5]. The system has recently been
reconfigured, hence the new hardware framework and control
software are described (section II). The broad aim is to develop
semi-automatic control systems that reduce operator workload,
speeding up task execution and reducing operator training
time, whilst minimizing the introduction of additional sensors
and other components. Due to limited sensor data availability
in nuclear environments, a system for grasping generic objects
could be unreliable. As a result, the developed approach is
based on the concept of multiple subsystems for common
tasks under one user interface: one for pipe cutting, one for
pick and place operations, and so on. This aims to reduce the
complexity of the problem, potentially leading to improved
performance and reliability. Furthermore, cognitive workload

The authors are grateful for the support of the Engineering and Physical
Sciences Research Council (EPSRC), grant number EP/R02572X/1, the Na-
tional Centre for Nuclear Robotics.

is reduced by tailoring the information shown to the operator.
The research focuses on pipe cutting as an illustration of the
generic approach, since this is a common repetitive task [6].

Motivated by preliminary testing that highlights limitations
in the performance, one aspect of the research programme
concerns the development of improved ‘low-level’ control
systems for hydraulic manipulators, such that they can more
effectively achieve the ‘higher-level’ task orientated objectives.
In this regard, it is notable that uncertainties and nonlinear-
ities, including actuator deadbands and time-delays, are not
always fully addressed in the literature [7]. In fact, the two
major challenges in high performance positioning and tracking
stabilisation of robot manipulators, are the friction between
moving parts and the deadband of the actuators.

The present work utilises a state-dependent parameter (SDP)
framework to characterise the manipulators. The parameters
of SDP models are functionally dependent on measured vari-
ables, such as joint angles and velocities, normally defined in
discrete-time terms [5]. However, in contrast to other recent
research into SDP systems for the same machine [6], the
present work utilises a new continuous-time SDP model that
is not dependent on the sampling interval, and uses this
to investigate uncertainties (including time-variations) in the
system time-delay and deadband (section III).

II. RECONFIGURED HARDWARE

The laboratory demonstrator used in this article consists of
two HYDROLEK HLK-7W manipulators, each a 6-degrees-
of-freedom articulated arm, with a seventh actuator for the
gripper. Whilst the original set-up is described by refer-
ence [6], a ball valve, pressure gauge and new pressure pump
were added in 2019. Fig. 1 shows the location of these
new elements. The hydraulic system was upgraded with a
Bosch Rexroth Pressure & Tank Circuit Hydraulic Power Unit,
providing 5.5 L/min at 220 bar and has a 15 L oil tank.

The manipulators are now controlled via a NI Compact
DAQ 9132 system. The cDAQ 9132 is a 1.33 GHz Dual-core
atom computer with 4 slots for I/O modules. The system runs
both Windows 7 Embedded Edition and Labview 2018 for
programming and interfacing. The cDAQ 9132 utilises three
I/O modules: one NI 9205 i.e. a 32-channel analogue-to-digital
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(ADC) converter and two NI 9264 i.e. 16-channel digital-to-
analogue converters (DAC). The two NI 9264 modules are
used to actuate the P02AD1 valves in the two manipulators.
The position angle sensors are rotary linear potentiometers.

A dedicated box was recently installed next to the robot
in order to hold the controller and associated equipment. A
monitor, mouse and keyboard are externally connected such
that an operator can control or program the robot from outside
the safety cell (to some degree, representing the situation on a
nuclear site where the robot will be remote from the operator).
Since the present article focuses on the low-level joint control
problem, inverse kinematics and the human-machine interface
are not described here: see [6] for a recent reference.

Fig. 1. Schematic diagram of the reconfigured hydraulic system.

III. METHODOLOGY AND PRELIMINARY RESULTS

The new continuous time SDP model for hydraulic manip-
ulators is identified in three stages, as follows:

Step 1. Open-loop step experiments, such as those shown
in Fig. 2, suggest that a first order linear differential equation,

θ̇(t) = −a1θ(t) + b1u(t− τ) (1)

provides an approximate representation of individual joints,
with a1, b1 and the time-delay τ estimated using the SRIVC
algorithm in the CAPTAIN toolbox [8]. Here, u(t) and θ(t)
represent the control input and joint angle respectively, where
the former is a scaled signal in the range ±10.

Step 2. Further analysis of experimental data using SDP
methods, suggests that a1 ≈ 0 is time invariant, whilst b1 is a
state dependent parameter. Hence,

θ̇(t) = q {u(t− τ)} (2)

where q {u(t− τ)} represents a static nonlinear function of the
input. For brevity, further details are omitted from this article,
but see [6] for an example of this static nonlinearity, albeit
expressed in discrete–time terms. However, these equations
and the prior work cited above, all assume time–invariant
τ , whereas Fig. 2 illustrates how the actual recorded time-
delays can vary from experiment to experiment (in the case
of Fig. 2) or during normal operation (more generally), hence
introducing a substantial challenge for control design.

Fig. 2. Open–loop experiments for an illustrative manipulator joint using step
inputs for a range of magnitudes, with the initially estimated time-delay shown
as a solid vertical line (i.e. sample 30). These graphs show the actual recorded
time-delays range from 18 samples to 29 samples because of variations in the
deadband. The upper and lower subplots show the manipulator being raised
and lowered respectively, each trace representing a different experiment.

IV. CONCLUSIONS

This article has described the updated configuration of a
robotic platform used for R&D. The SDP approach to system
identification for hydraulic manipulators is briefly reviewed,
here with the equations adapted into a new continuous-time
form. This new formulation is designed to facilitate research
into models and control systems that address time-delay and
related deadband nonlinearities. In the latter regard, the authors
are developing and presently evaluating both conventional and
nonsingular terminal sliding mode control systems, in addition
to various forms of SDP based control.
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Abstract—To achieve more accurate early prediction of human
motion and enable robots to respond in a safe manner, a human-
robot collaboration (HRC) architecture is proposed to predict
future human activities and their trajectories using skeletal data
collected from a Kinect. The architecture is the combination
of two models. The first model is designed to predict motion
trajectories and is based on a recurrent Encoder-Decoder long-
short-term-memory (LSTM) network that takes a historical
trajectory as input and predicts a future trajectory as its output.
The second model predicts the next activity to be performed using
a combined LSTM and conditional random field network (LSTM-
CRF). Preliminary results are presented showing the efficacy of
the approach with the LSTM-CRF able to achieve high-quality
human activity classification, and the encoder-decoder LSTM
able to accurately predict the coordinates of future human motion
trajectories.

Index Terms—human-robot collaboration, skeletal data,
sequence-to-sequence, LSTM

I. INTRODUCTION

Efficiency and safety are among the most important con-
siderations in manufacturing automation. With collaboration
between humans, aided by their ability to anticipate each
other’s actions, high-level tasks with multiple sub-activities
can easily be handled to satisfy these criteria. In contrast, in
human-robot collaboration (HRC) efficiency and productivity
are frequently negatively impacted by safety related conser-
vative robot operation, as well the computational overhead
of dynamically computing actions sequences. It is therefore
desirable to develop robots that can anticipate human actions
in order to facilitate safe and effective collaboration. To
achieve this target, an integrated HRC architecture is pro-
posed consisting of real-time human dynamic motion tracking,
human motion recognition and human trajectory prediction
modules. The overall architecture of the proposed system is
summarised in Fig 1. The input to the system is a sequence
of subtasks expressed as trajectories of human skeletal joint
coordinates, with each subtask corresponding to one action.
These are processed by a long-short-term-memory Encoder-
Decoder neural network (LSTM-ED) to give a prediction

of the human joint coordinates for the next subtask. This
information on human pose is then processed by a LSTM
Conditional Random Fields (CRF) model to generate the label
of the future subtask. The predicted human motion trajectory
and subtask label are then passed to the robot motion planning
and control algorithms. These algorithms are currently under
development. The contribution of this paper is to introduce
the architecture for human motion and activity prediction for
HRC, and to present some preliminary results demonstrating
its efficacy.

LSTM 
Encoder 

LSTM 
Decoder 

LSTM 
CRF 

Future 
Trajectory 

Future 
Task 

Seamless 
Collaboration 

Trajectory Prediction Task Recognition 

Fig. 1: Human robot collaboration architecture.

II. NETWORK TYPOLOGIES

A. LSTM-ED Network for motion prediction
Long Short-Term Memory (LSTM) is a recurrent neural

network (RNN) architecture that was designed by Hochreiter
and Schmidhuber [2] to address the vanishing and exploding
gradient problems of conventional RNNs, and are ideally
suited to processing sequential (time-series) data. In our work
we employ a LSTM-ED architecture to implement a motion
prediction model. The architecture, which has previously been
successfully applied to video prediction and intelligent trans-
lation applications [4], [6], is a many-to-many LSTM imple-
mentation consisting of a multi-layer encoder and a multi-layer
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decoder (Fig 2). The encoder computes a representation s for
each input sequence that represents a past motion sequence.
Based on that input representation, the decoder generates an
output sequence that represents a sequence of future motion.
The input is a sequence of coordinates with 50 values (25
joints × 2D coordinates) from a set of 90 frames (3 seconds)
of human skeleton reference points, as captured by a Kinect.
The attention vector is the sum of hidden states of the encoder,
weighted by attention scores. The input to the decoder is the
concatenation of the previous hidden state and the attention
vector. The first prediction is used as the input to the next
LSTM cell.

LSTM LSTM LSTM

Frame 1 Frame 2 Frame 3

V

LSTM LSTM

Pre_Frame 4 Pre_Frame 5

Encoder

Attention 
Vector

Frame 4

+ +

Decoder

Input 5

Fig. 2: LSTM sequence-to-sequence model architecture

B. LSTM-CRF for activity classification

Conditional random fields (CRF) are discriminative models
for sequence labeling, which have been shown to be a powerful
model for sequence tagging problems [3]. The motivation for
introducing this model in combination with an LSTM, as
first suggested by [1], is that it enables both previous and
future context to be considered, and is therefore more suited
to representing the diversity and time-varying nature of human
activity. An LSTM-CRF network is obtained by employing the
hidden states of the an LSTM as the inputs to a CRF layer,
where the role of the CRF is to learn a mapping from the
hidden state values to the subtask labels [5].

III. RESULTS

We evaluate the performance of the proposed LSTM-ED
and LSTM-CRF models for a basic activity involving the use
of a screwdriver. The activity is partitioned into three sub-
activities; sitting-down, bending over to pick up the screw-
driver, and using the screwdriver to tighten a screw (simulated
action). As the frame rate of the Kinect is 30 frames per
second, one sample of the full screwdriver task consists of 180
frames (2 seconds per sub-activity). A dataset consisting of
120 repetitions of this task was recorded and used as training
and test data for the models. Twenty percent of the data was
retained as test data. Models were implemented in Python and
trained using PyTorch.

First, we evaluate the LSTM-CRF by reporting its activity
classification accuracy. Second, we evaluate the LSTM-ED
by comparing the difference between the predicted future
coordinates and the ground-truth in terms of the mean square
error. In addition, we plot the predicted human pose for 90

future frames based on the previous 90 frames to check if the
behaviour corresponding to the sub-activity can be predicted
accurately. The results are shown in Fig 3.
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Fig. 3: Experimental results: (a) the LSTM-CRF model learn-
ing curves; (b) The test data confusion matrix for sub-activity
recognition in the screwdriver usage task; (c) MSE comparison
between MLP, CNN and LSTM-ED models for motion predic-
tion; (d) Selected expected and predicted skeletal data frames
for one instance of the screwdriver task using the LSTM-ED
model.

For the screwdriver usage activity the LSTM-CRF model
is able to achieve an accuracy of 99.24% and 98.76% on
the training and test datasets, respectively, and for motion
prediction the LSTM-ED substantially outperforms MLP and
CNN based alternatives, which were also trained and tested
for this activity.

IV. CONCLUSION

In this paper, we propose an architecture for providing
robots with the capacity to anticipate human actions as an
enabler for more effective human-robot collaboration. The
architecture involves the use of skeleton-based human tracking
data and LSTM-CRF and LSTM-ED based recurrent neural
network models to perform human activity classification and
human motion prediction, respectively. Preliminary results
demonstrate the potential of the approach for predicting human
activity subtasks ahead of time, offering the possibility of
designing robot path planning and motion control algorithms
that are more responsive and attuned to human interaction.

In future work, bespoke path planning and motion control
algorithms will be developed and integrated with the proposed
architecture and the overall system evaluated on more complex
human-robot collaboration scenarios.
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Abstract—Topological localization is advantageous for robots
with limited sensing ability in pipe networks, where localization is
made difficult if a robot incorrectly executes an action and arrives
at an unknown junction. Novel incorporation of measurement
of distance travelled is used in a Hidden Markov Model based
localization method, which is shown to improve accuracy.

Index Terms—Robot Localization, Topological Localization,
Pipe Inspection Robots.

I. INTRODUCTION

Water pipe infrastructure is in regular need of maintenance,

the cost of which may be reduced by precisely locating

faults using robots for autonomous, persistent monitoring of

a network. A principal challenge for this robotic system is

to localize itself and faults in the network. This work is on

topological localization for a single robot in a network of

pipes. While metric information would be required for precise

localization of a fault, topological localization to a single

discrete pipe or junction would be sufficient for navigation

and for localizing a fault to a part of the network. Metric

localization is poorly suited to pipes, as parametric methods

like Kalman filters poorly describe the multimodal probability

distribution of robot position, and non-parametric methods like

particle filters require high computational power from the robot

with limited power and size.

Early work in robot localization was done in a topological

map [1], as was early work on localization in a pipe network

[2]. Recent work on topological localization incorporates some

geometric information [3], and recent work on localization in

pipes also uses both metric and topological information [4].

This work investigates challenges to localization by the

possibility of the robot incorrectly executing an action, and

presents the incorporation of measurement of distance into

the localization method. The rest of the paper will describe

the model of uncertainty in robot motion, and describe the

novel addition to the typical localization method. Simulation

has been used to evaluate the method, and to investigate the

effect of uncertainty parameters on the localization accuracy.

II. PROBLEM DEFINITION

The robot moves in a network of pipes shown in Fig. 1.

The network has a range of topologies at smaller scales. It

is assumed that the topology and approximate geometry of

the network are known. At a junction, the robot chooses a

direction at random relative to its own unknown orientation.

This work is supported by an EPSRC Doctoral Training Partnership Schol-
arship. S. Anderson acknowledges the support of EPSRC grant EP/S016813/1
(Pipebots)
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Fig. 1. The example network of pipes used in simulation, consisting of 63
nodes, each connected to 1, 3, or 4 other nodes. Inset is a smaller part of the
network with labelled junction indices. The further inset shows the labelled
pipes in blue, where each pipe with two labels, one for each node.

This action could be chosen to best inspect the network,

however this would not affect localization so is neglected.

The robot state is defined by three components. The first

component is the robot’s discrete position, which is the junc-

tion index. The second component is the robot’s discrete direc-

tion which is the index of the pipe which it has arrived from,

allowing use of information about the robot’s choice of action.

The third component is the robot’s previous position, allowing

information about the length of the journey between junctions

to be used, as described later. The latter two components are

distinct when there are multiple paths between two positions.

The robot state is only updated at junctions or at ends of pipes,
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Fig. 2. (a) An example of the discrete probability distribution for robot
motion, in this case from node 7 in a 12 node network. Shown is the motion
model used to simulate the robot motion, the estimate of this distribution used
for localization, and the full localization model considering the probability
of missing a node. (b) An example continuous probability distribution over
possible measurements of distance between a pair of nodes.
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Fig. 3. An example of the use of the localization method in the map in Fig.
1. Each column shows the belief vector over a subset of the discrete states
at that time step, where each value represents the probability of being in the
corresponding state. The darkness of the colour corresponds to the value of
belief in the state. The largest belief value is highlighted in blue if it is correct
and red otherwise, where the correct value is shown in orange. (a) The result
found without using the measured distance between states, (b) The improved
result found when using the distance.

and the robot’s position and orientation are not considered in

transitions between these states.

There are four sources of uncertainty in the robot motion:

Incorrect action execution, return to the previous junction,

not detecting a junction and missing it without updating the

state, and normally distributed noise in the time taken to

travel between junctions. The three discrete components of this

model are illustrated as a discrete probability distribution in

Fig. 2(a). As the state transition model is difficult to compute

exactly, for a given network a Monte Carlo method is used to

approximate the transition probability between each state.

The robot makes two observations: the number of exits

from a junction, and the distance moved since its last state

update. For a given state transition there are a number of routes

and corresponding distances. The probability distribution over

possible noisy distance measurements is given by a sum of

Gaussian distributions, shown in Fig. 2(b). Odometry used to

observe this distance could be done using wheel encoders,

vision, or simply using the control input and time taken.

III. METHODS

The discrete probability distribution, or belief, over the

possible robot states is desired. The belief is a vector summing

to one where each value represents the probability of being

in the corresponding state. The forward algorithm is used

to compute the belief as a Hidden Markov Model (HMM).

Using the given state definition, this is equivalent to a second

order HMM. The localization model parameters are set to

be somewhat incorrect estimates of the values in the motion

model described previously, so that the robot does not have

exact knowledge of the true motion model. The typical form

in Equation 1 computes the updated belief b
′ over states s

′,

based on the belief b over states s, the observation o, action

a, transition and observation models T and O, and a new term

for incorporating measured distance m, M .

b
′(s′) = M(m|s′)O(o|s′)T (s′|s, a)b(s) (1)

TABLE I
EFFECT OF EACH PARAMETER ON THE LOCALIZATION ERROR METRICS.

incorrect return miss noise
action probability probability magnitude

Error Metric ρ
a gb ρ g ρ g ρ g

Total Error -0.41 0.00 -0.20 -0.04 0.98 0.83 0.99 1.96

Mislocalization -0.46 0.00 -0.61 -0.05 0.98 0.37 0.99 0.66

Relocalization Time -0.01 0.00 0.69 1.50 0.95 7.47 0.96 13.4
aThe correlation coefficient ρ between the metric and the parameter.
bThe linear fit gradient g is the magnitude of the effect of the parameter.

IV. RESULTS

An example of the localization performance is shown in Fig

3. This illustrates the improvement found when incorporating

measured distance between junctions. The robot is simulated

moving 1000 times between junctions in the network shown

in Fig. 1 using the robot definitions given previously, and

the state is estimated after each move. The total error is

measured as the proportion of steps at which the estimation is

incorrect. The effect of the four parameters is investigated by

performing the simulation for different values of each, giving

256 sets of measurements in total. Over the 16 parameter sets

representing lower uncertainty, the median total error without

use of measured distance is 0.60 (with an interquartile range

of 0.17). This is reduced to 0.18 (with an interquartile range

of 0.11) with the use of measured distance.

The total error can be decomposed into two parts: the

proportion of steps where an initial mislocalization occurs,

and the mean number of steps before successfully relocalizing.

Table I shows two measures of the effect of each parameter on

the result for these metrics: the correlation coefficient and the

gradient of a linear fit. The probability of missing a junction

and measurement noise have a strong effect on all metrics, and

the probability of incorrectly returning to the previous node

has an effect on the relocalization. The probability of correctly

executing an action does not affect the accuracy. These results

give a measure of the hardware requirements for localization.

V. CONCLUSION

Simulations show that a Hidden Markov Model based

method is able to effectively localize a robot in a discrete

network where there is a possibility of the robot missing nodes

in the network, using noisy measurements of distance travelled

between nodes. Variation in the measurement noise and the

probability of missing a node is shown to have a large effect

on the localization effectiveness.
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Abstract—As the world rapidly becomes more urban, 
alongside opportunities to enhance social life, cities face pressing 
challenges in terms of; congestion, air pollution, food 
production, provision of care services, infrastructural upgrades, 
and increased demands for energy, water and mineral 
resources. Concurrently, technological advances are beginning 
to extend robotics and autonomous systems technologies (RAS) 
outside of controlled laboratory environments. In response to 
these trends, new collaborations are emerging in the form of 
RAS urban living labs (RAS-ULL) – sites devised to design, test 
and learn from social and technical RAS innovation in real time. 
In the U.K., and internationally, there is growing policy 
advocacy for governments to support development of these 
experimental spaces to refine and de-risk RAS applications, but 
this goal is challenging for urban governance bodies and 
regulators protecting the public realm. This paper analyses 
RAS-ULLs from three emblematic national-urban contexts 
leading in urban robotic experimentation – the U.K., U.S.A. and 
Japan – adopting a focus on delivery robots, service robots and 
maintenance robots. Developing a comparative analytical 
framework, we demonstrate the significant potential to learn 
from international RAS-ULL exemplars to enable extended 
field experiments in U.K. cities and build strategic capacity 
around a proactive policy landscape for responsible urban 
robotic experimentation.   

Keywords— Urban living labs, experiments, field robotics, 
regulation, human-robot interactions, social acceptability.  

I. INTRODUCTION

In the context of contemporary urbanism, there is 
mounting interest amongst researchers, technologists and 
policymakers in re-shaping city infrastructures, services and 
aspects of social life through advances in robotics and 
autonomous systems (RAS) [1–7]. The possibilities for RAS 
restructuring of the city reflect significant developments in 
materials engineering, communications, artificial intelligence 
and machine learning, entwined with data analytics and socio-
technical platforms that use robotics to augment and re-bundle 
service infrastructures [8]. This potential is reflected in 
national economic strategies, for example Japan’s Robot 
Revolution Initiative, which seeks ‘to make Japan the world’s 
most advanced robot showcase and achieve a society in which 
robots are utilised more than anywhere in the world’ [9], and 
in proposals for a new generation of utopian city projects – 
such as the proposed mega-city of Neom in Saudi Arabia [10], 
or Toyota’s plans for a smaller-scale Woven City in Japan 
[11]. Alongside these flagship visions and initiatives, there is 
growing pressure for existing cities to open up public spaces 

for new RAS experiments and applications, as emerging 
technologies reach the point of potential real-world 
application. Set against existing policy and regulatory 
frameworks, experimental RAS Urban Living Labs (RAS-
ULL) are being advanced as an explicit form of intervention 
to trial, de-risk and improve new technologies, build public 
support, and appraise the possibilities, realities and 
implications of this new phase of urban restructuring.  

To date, RAS systems have been primarily developed in 
tightly regulated contexts such as research laboratories [4]. As 
recognised by the U.K. Government Office for Science White 
Paper ‘Technology and Innovation Futures’, there is a need to 
support RAS, and particularly robotic, applications outside of 
these controlled environments and ‘establishing further ‘test 
beds’ to experiment with emerging technologies in carefully 
supervised real-world systems, like cities’ [13]. Creating 
living laboratories ‘provide[s] a sharp focus to aim 
developments from basic RAS scientific research into first 
prototype demonstrators’ [12] because urban test beds are 
‘more open and complex, less predictable, and… where 
[human-machinic interactions] are less controlled’ [3]. 
However, creating these spaces and conditions raises critical 
challenges for urban decision-makers [3, 12]. RAS 
infrastructures are expensive, and there are technical, trust, 
safety and ethical challenges in bringing emerging 
technologies into complex and dynamic urban spaces 
alongside humans. Decisions will need to be made about the 
granting of licences to R&D organisations and selective 
changes in regulation. New collaborations between 
universities, private companies and public agencies will be 
needed to undertake and learn from experiments. The wider 
public will need to be actively involved in understanding the 
purposes and potential of testing in their local communities, 
as well as how experimental findings will be used [3]. 

Urban living labs (ULL) are sites devised to design, test and 
learn about the wider issues involved in the application of 
new technologies in real world conditions [14]. While the 
notion of ULL is broad, at its core is the idea that urban sites 
can provide a learning arena within which the co-creation of 
innovation can be pursued between research organisations, 
public institutions, private sector and community actors [15]. 
ULL have 3 key characteristics:  
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1. Experimentation: The testing of new technologies,
solutions and policies in real world conditions, often
in highly visible ways.

2. Participation and user involvement: Co-designing,
collaboration and engagement with many
stakeholders is often central to the experimental
approach.

3. Evaluation of actions and impact: Systemic
processes of evaluation underpins the ability of
ULL to facilitate formalised learning and upscaling
of applications.

For leading practitioners and advocates, ULL are seen not 
only as a means through which to gain experience, 
demonstrate and test technologies, but also as a step towards 
developing responses that have the potential to be scaled up 
across different domains, in order to support more systemic 
change. Notwithstanding the current Japanese service-
industry context, real-world experiments in autonomous 
vehicles (AVs) and unmanned aerial vehicles (UAVs 
underway in a number of U.S. states, and trials of delivery 
‘bots’ in the U.K. city of Milton Keynes, there remains 
relatively little analysis of what types of ULL might be 
needed for different aspects of RAS applications. Most ULL 
have to date been focussed on innovations in digital 
technologies, smart cities and urban infrastructure. 
Consequently, there is an urgent need to consider how such 
robotic-ULLs might address key deficits and challenges in 
the UK to accelerate the application of RAS, and review how 
international experience might provide lessons for effective 
urban experimentation and application domestically [3].  

II. METHODOLOGY
To develop the evidence base that can support RAS-ULLs as 
a means for ‘responsible urban innovation’ [4], a systematic 
and comparative analysis of their rationales and interests, 
operations, outcomes and challenges is required. To 
contribute to this agenda, this article adopts an internationally 
comparative analytical approach to examine; (i) the design 
and enabling conditions for RAS-ULLs, (ii) the processes 
through which RAS-ULLs are implemented, and (iii) the 
effectiveness with which, and learnings from how, these 
interventions reshape and augment city infrastructures and 
services, societal practices, and urban governance. We 
develop a robust framework for analysing these three 
dimensions comparatively across three global contexts that 
are leading in robotic urban experimentation – Japan, U.S.A. 
and U.K. The research focuses on ULL that are experimenting 
with (i) service robots, (ii) delivery robots, and (iii) 
maintenance robots. We have selected these RAS innovations 
on the basis that they; are already being trialled in semi-public 
and public realms, seek to reshape and augment the delivery 
of urban services and operation of city infrastructures, 
challenge existing urban policy frameworks and regulation, 
and will involve interaction with citizens when deployed in 
cities. The case studies were researched through a 
combination of documentary review, and approximately 50 
one-hour long semi-structured interviews conducted with 
policymakers, robotics firms, and professionals working with 
and/or employing robots in these locations. These data were 
subsequently coded and thematically analysed. 

III. ANTICIPATED OUTCOMES & IMPLICATIONS
Whilst this research is ongoing, we anticipate that this

project will highlight how robots are being materialised in 
specific ‘early mover’ cities, and that their processes and 
effects will be uneven. We seek to appraise the extent to which 
these RAS innovations become ‘embedded’ into, shaped by, 
and themselves shape infrastructures and urban services, 
social relations and policy arrangements [16] in order to 
inform future research priorities. To date, these initiatives are 
limited in material extent, with a focus on visions more than 
application, and discrete trials rather than holistic urban 
robotic restructuring [7].  This research will highlight; (i) how 
different social, technical and political contexts create 
conditions for, limit, and lead to contestations around urban 
robotic experimentation, (ii) the necessary coevolution of 
spatial planning, urban regulation, urban design and human-
robotic interaction in the future ‘infrastructuralisation’ of 
robotically augmented cities, and (iii) the need to link national 
innovation priorities for future cities and industrial strategy to 
pressing urban issues, to responsibly create a social context 
for RAS applications in contemporary cities. 
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Abstract—In this paper, we introduce an egocentric dataset
recorded from a robot’s point of view (robocentric), which has
been created to serve as a platform for indoor crowd analysis.
The dataset features over 100,000 RGB, depth, and wide-angle
camera images as well as LIDAR readings, recorded during a
social gathering where the robot captured group interactions
between participants using its on-board sensors. We evaluated
three different human detection algorithms on our dataset to
demonstrate the challenges of indoor crowd analysis from a
robot’s perspective.

Index Terms—Indoor crowd analysis; Multisensory egocentric
dataset; Group recognition

I. INTRODUCTION

Crowd analysis can enable robots to navigate in indoor spaces,
approach groups or individuals, and through human-robot
interaction assist them in their tasks or in achieving their
goals. The research conducted during the past decade on crowd
analysis and group detection shows promising results as it
utilises the concept of F-formations [1] in order to determine
interaction spaces. Most approaches have relied on head and/or
body posture detection to build models [2], based on top-down
or a bird-eye viewpoint images.

As highlighted by Taylor and Riek [3], these techniques
do not keep a robotic context in mind, as they often do not
consider the unpredictability of human spaces. Moreover, they
do not deal with the different types of noise introduced by the
robot’s sensors and movement [4], nor do they approach the
problem from a robot’s point-of-view, which makes them less
accurate when applied to an egocentric view.

As shown in Fig. 1, to address the aforementioned gaps, we
collected a novel Robocentric Indoor Crowd Analysis (RICA)
Dataset 1 using Toyota’s Human Support Robot (HSR) [5]
as a robotic platform. In particular, we recorded a crowded,
semi-public indoor event using robot’s on-board cameras as
well as LIDAR sensor. In comparison to the existing datasets
such as the JackRabbot Dataset [6], the RICA dataset was
acquired with less high-end sensors, and we annotated it to
enable human detection and group recognition. In this paper,
we discuss the challenges of crowd analysis from a robot’s
perspective and compared three benchmark human detection
methods on our dataset.

We thank Toyota Motor Europe for providing the Toyota HSR robot as a
development platform.

1The dataset will be made available at https://sairlab.github.io/rica/.

(a1) (a2) (b1) (b2)

Fig. 1. RGB-D (a1, b1) and Wide-angle camera (a2, b2) samples from two
different timestamps of the RICA dataset.

TABLE I
SUMMARY OF THE COLLECTED DATA USING ROBOT’S ON-BOARD
SENSORS COMPARED TO THE RELEVANT RECORDINGS OF JRDB.

Sensor Type Num. of Samples Average Framerate
RICA JRDB RICA JRDB

RGB camera 43,060 57,713 10.542 15.116
Depth camera 39,909 57,714 9.771 15.116
Wide-angle camera 17,877 58,313 4.377 15.273
Joint position 63,569 38,476 15.563 10.078
IMU 127,324 74,234 31.172 19.443
LIDAR 50,926 56,844 12.468 14.888

II. ROBOCENTRIC INDOOR CROWD ANALYSIS DATASET

The proposed dataset was recorded during a reception-style
semi-public event in an indoor environment with Toyota’s
Human Support Robot (HSR) [5]. The robot recorded the event
with an “ASUS Xtion PRO LIVE” – RGB-D – camera, a wide
angle camera (Nippon Chemi-Con NCM13-J-02), and a “Laser
measuring range sensor (UST-20LX)” – LIDAR – sensor. The
dataset contains over an hour-long recording of 50 people
conversing at a departmental party. Attendees were provided
written informed consent, and the data collection protocol was
approved by the Ethical Committee of King’s College London,
United Kingdom. Moreover, for privacy-preserving reasons,
the face of the attendees was blurred and only distance and
image data was collected.

To obtain a diverse dataset, the robot was driven around
at different speeds, following varying paths. Using the height
and head adjustment of the robot, its cameras were raised
to different elevations, and its head was set to record at
a variety of tilt and roll angles. Examples of the camera’s
captured images can be seen in Fig. 1, where the image data
was captured at a resolution of 640 × 480. We also recorded
IMU measurements of the robot and the joint positions of its
head while moving, which can be used to find correspondence
between image modalities and LIDAR readings (963 samples
from −2.098 to 2.098 radians per sample). The number of
samples and average rate per modality are given in Table I.
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Fig. 2. An annotated image recorded with the RGB camera, showing a person
(ID 21 – blue bounding box on the right hand side) not belonging to any
group, and two individuals (IDs 19-20 – red bounding boxes in the middle)
belonging to group ID 57 (green bounding box in the middle), where the
group formation of group ID 57 is annotated as face-to-face.

We labelled the dataset by using a modified version of
the Actanno annotation tool [7]. All RGB images of the
dataset have been labelled at a group-level, plus identifying the
group formations (i.e. L-arrangement, face-to-face, side-by-
side, semi-circular, and rectangular) [8]. In addition, person-
level labelling, marking people and assigning them to the iden-
tified groups, has been done for a total of 8, 148 RGB images.
These person-level annotations show that in each frame there
are 1 to 8 people with an average of 3.92 individuals per
frame. The annotations of the remaining modalities can be
automatically derived from the labelled bounding boxes based
on the timestamps and the joint positions. A sample annotated
image can be seen in Fig. 2.

A. Challenges

The RICA dataset was collected without providing participants
a script, therefore capturing the natural behaviour of attendees
when a mobile support robot was navigating the event floor.
The robot was driven at different speeds, on randomised paths,
while its cameras were raised to different elevations and its
head was held in different angles as it observed the interaction
groups. Our manual inspection of the data shows that this
resulted in high variation in the camera-to-subject distance
(0.1-25m), and participants were often occluded by static
objects or each other. It was not ensured that all participants
of a single group were in the field of view of the robot and
the observation length of each group was varied. The height
variation introduces colour changes in the observations of
the RGB-D and Wide-angle camera’s images. Due to these
factors, the recognition of individuals, groups, and group types
from the robot’s viewpoint is a challenging task, and datasets
dedicated to robocentric settings are crucial to advancing the
state-of-the-art.

III. EVALUATION

We define a series of tests to evaluate the performance of
state of the art human detection algorithms on the collected
dataset. In particular, we test three methods on the RICA
dataset, without fine-tuning: (1) Histogram of Oriented Gra-
dients (HOG) [9] combined with non-maxima suppression

(a) (b)

(c)

Fig. 3. Histograms of IOU values for between GT and (a) HOG; (b) SSD; and
(c) YOLO. The red vertical lines show the minimum IOU and overlap scores
to consider a bounding box as a True Positive detection. Green vertical lines
indicate the IOU and overlap scores above which the detection is considered
as successful.

(NMS); (2) MobileNet-SSD (SSD) [10] – trained on MS-
COCO [11], and then fine-tuned on VOC0712 [12] – with
centroid tracking, and (3) YOLO [13] – trained on MS-COCO
[11]. After retrieving the bounding boxes with each of the hu-
man detection methods from the person-level annotated RGB
images of the RICA dataset, we computed their intersection
over union (IOU) values against ground truth (GT).

Even though there is minimum a single person in each
frame, the HOG+NMS detector failed to detect any humans
in over 11% of the images, whereas the MN-SSD and YOLO
exhibited a similar, better performance – not detecting any
humans in 0.7% of all frames. The results of the IOU
comparisons are given in Fig. 3. The best mean IOU score
(µ = 0.64) was obtained with the SSD detector.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel robocentric dataset for
indoor crowd analysis, called RICA. Our preliminary analysis
shows that the state-of-the-art human detectors fall short and
sometimes are unable to detect any humans in the scene due
to a list of challenges as summarised in Section II-A. As
future work, we will investigate how we can improve human
detection and tracking, e.g. by employing occlusion handling
techniques in tracking [14]. Moreover, we aim to design an
unsupervised approach to group detection in indoor crowded
scenes – by adding modalities other than RGB image inputs,
and utilising F-formations – based on the RICA dataset.

REFERENCES

[1] A. Kendon, Conducting interaction: Patterns of behav-
ior in focused encounters. Cambridge University Press,
1990.

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

64



[2] C. Raman and H. Hung, “Towards automatic esti-
mation of conversation floors within F-formations,”
arXiv:1907.10384 [cs], Jul. 2019.

[3] A. Taylor and L. D. Riek, “Robot Perception of Human
Groups in the Real World: State of the Art,” in 2016
AAAI Fall Symposium Series, Sep. 2016.

[4] A. Tapus, A. Bandera, R. Vazquez-Martin, and L. V.
Calderita, “Perceiving the person and their interac-
tions with the others for social robotics – A review,”
Pattern Recognition Letters, Cooperative and Social
Robots: Understanding Human Activities and Inten-
tions, vol. 118, pp. 3–13, Feb. 2019.

[5] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asa-
hara, and K. Murase, “Development of Human Support
Robot as the research platform of a domestic mobile
manipulator,” ROBOMECH Journal, vol. 6, p. 4, Apr.
2019.

[6] R. Martı́n-Martı́n, H. Rezatofighi, A. Shenoi, M. Patel,
J. Gwak, N. Dass, A. Federman, P. Goebel, and S.
Savarese, JRDB: A Dataset and Benchmark for Visual
Perception for Navigation in Human Environments.
2019.

[7] C. Wolf, E. Lombardi, J. Mille, O. Celiktutan, M.
Jiu, E. Dogan, G. Eren, M. Baccouche, E. Dellandréa,
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Abstract—Hierarchical Control Structures are employed in a
variety of robots. However, the choice of hierarchy to use affects
the ability to control the environment. If a robot could help
define the required control hierarchy, this would help avoid the
engineer picking an invalid hierarchy and secure effective control.
This paper proposes a methodology named DOSA (Dependency
Oriented Structuring Architect) which allows a robot to define
their own control hierarchy from experience. DOSA brings
consistency to hierarchical control, using a clear understanding
of hierarchies to encapsulate the heuristic approach an engineer
uses and automate a process that requires specialised expertise.

Index Terms—Hierarchical, Control, Automation, Learning

I. INTRODUCTION

Hierarchical Structures are used across robotic solutions
with variable success [1]–[3]. Hierarchies when built well have
competence that outdoes non-hierarchical approaches [4]. It is
a challenge to find a definition of a hierarchy that gives the
required insight for an engineer to be able to produce a valid
control hierarchy. Prescott identifies the difference between a
layered system and a hierarchical system [5], but no clearer
definition exists. Solutions to robotic problems that employ
hierarchical controllers show that a hierarchy is formed from
dependencies, where the control of one signal requires the
control of another [6]. Dependencies therefore are key to
understanding a hierarchical structure, which are something
an engineer and perhaps an autonomous agent can deduce.
The question then becomes whether these dependencies can
be identified. This paper proposes the use of dependencies be-
tween input signals as a means of understanding the constraints
on possible hierarchies. Then, these constraints can be used to
identify a suitable plan of experimentation in the environment
that would allow a suitable hierarchy to be deduced. This
framework for deriving hierarchies can be used to identify
valid hierarchies, improving a control engineer’s derivation of
the hierarchy and in turn improving control.

II. DOSA; THE DEPENDENCY-ORIENTED STRUCTURING
ARCHITECT

A. How Dependencies Could Identify the Hierarchy

To briefly consider closed loop control, a controller should
output to all actuators that it needs control over. It should
not be outputting to actuators that do not affect the input
signal being controlled. This would be at best inconsequential,
or more likely counter-productive. This principle can reduce
the possible hierarchies before attempting any combinations.
Identifying which actuators affect which inputs is possible
either with simple observation or automatically with Input-
Output Analysis [7]. If a controller for a specific input is to
hierarchically depend on another controller, it should be to
control actuators that it is affected by and no other actuators.
After all, a controller should not be directly or indirectly
outputting to actuators that are inconsequential to the control
task of that controller.

B. Stage One: Identifying Possible Hierarchical Constraints

For each input, the set of actuators that must be controlled
can be identified. A controller for that input should only
hierarchically delegate to a controller whose set of actuators
is a subset of its own actuator set. This way, it will not end up
outputting to an actuator that it does not require for control.
If a robotic arm with motors and sensors at each joint are
considered, there would be some clear findings.

• The position of the hand is affected by the wrist joint,
the elbow joint and the shoulder joint.

• The position of the wrist is affected by the elbow and
shoulder joints, but not the wrist joint

• The position of the elbow is only affected by the shoulder
joint.

• Nothing changes the position of the shoulder, so the
position of the shoulder need not be considered.

By examining these subsets, invalid hierarchies can be iden-
tified, as detailed in Fig. 1. The possible combinations of
hierarchically arranged controllers is reduced by understanding
the inputs they affect.
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Fig. 1. A table showing which inputs are affected by which actuators above
and an example controller for those inputs and actuators below. This controller
is invalid when considering the constraints from the table above. The elbow
position control signal (A) outputs to the elbow joint actuator (B) indirectly.
The table indicates the elbow position is not dependent on the elbow joint,
making the hierarchy invalid.

C. Stage Two: Identify Resolution Order

The agent can now developmentally experiment to work
out which hierarchy is best, but a suitable order is required to
allow this developmental progression. This becomes a simple
logic problem, since no controller should be processed before
any possible subordinate controller is processed. Therefore,
controllers need to be added to the queue such that no possible
subordinate is added after it.

• Make a list of every controller and the set of actuators it
must output to.

• For each controller’s actuator set, identify how many
other controller’s actuator set is a subset.

• Every controller that has no subsets among the other
controller’s actuator sets is safe to process, as it has no
possible subordinates in the remaining controllers. Add
all those controllers to the resolution queue, and remove
them from the list.

• If the list is empty, the task is complete. Otherwise, return
to the second step.

D. Section Three: Identifying a Suitable Hierarchy Through
Progressive Experimentation

Each controller can now be progressively added, attempt-
ing the possible different arrangements that would meet the
constraints of that controller. Fig. 2 demonstrates the addition
of a second controller and the valid arrangements including
this controller. Given an optimisation algorithm to tune the
controller’s parameters, the best arrangement can be selected
that minimises error over all controllers. This could be either
hierarchically placed on top of one or more existing controllers
or entirely aside from them. The process is complete once

Fig. 2. A controller that is in the process of being progressively derived (A)
and two possible options for where the current controller could connect to
(B1 and B2). Given the constraints in Fig. 1, reaching the shoulder joint and
elbow joint actuator can be achieved in two ways. This is either by controlling
an existing controller (B1) or connecting directly to the actuators (B2) and
can be decided by which produces the least error.

all controllers have been added in the resolution order. This
process can streamline the complex process of trying all
hierarchical configurations and make obtaining hierarchies
practical and led by unifying methodology.

III. LIMITATIONS, DISCUSSION AND FUTURE WORK

This paper details a methodology named DOSA that can
derive hierarchies from experience in the environment. Also,
this paper clarifies the nature of a hierarchy and how de-
pendencies are critical to the definition and deployment of
a hierarchy. This paper only considers simple scenarios, so
more complex scenarios need to be considered to allow a wide
application for DOSA. Such examples would be inputs that
have complex relationships with actuators (such as multiple
actuators being required to change an input value). Input-
Output analysis covers understanding many complex input-
output relationship [8], [9] but testing that these work in
control specific environments is required. Furthermore, this
paper doesn’t cover the required action if inputs have an
identical actuator set. A variety of solutions have been derived
by hand, including a hierarchy for the arm used in Living
Control Systems 3. The next steps are to automate DOSA and
apply it on a simple robotic control system that would typically
be solved by a cascade controller. Input-Output analysis shall
be used for stage one and evolutionary algorithms to optimise
in step three. The long-term objective of this work is to have
agents be able to fully derive and optimise their own control
hierarchies independent of a human engineer. This would
save required time, expertise and guarantee a consistent and
effective control hierarchy.
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Abstract—Development of tools and methods to aid in the 

research of fixed-wing Unmanned Aerial Vehicles (UAVs) is 

presented. A Remote-Controlled (RC) model aircraft is used as 

the target airframe. The flight simulator X-Plane 10 is used for 

the grey-box modelling and MATLAB/Simulink is used for the 

white-box modelling. XFLR5 is utilised to obtain crucial 

aerodynamic data. The process of constructing the flight model 

on X-Plane 10 via a set of software tools and the development 

of a 12-state, six-degrees-of-freedom MATLAB/Simulink based 

simulation are demonstrated. The method presented 

demonstrates useful applicability. 

Keywords—UAV, HITL, GNC, Simulation, Modelling 

I. INTRODUCTION 

Autonomous systems, like fixed-wing UAVs, employ 
two major operational modules: high-level Guidance and 
Navigation algorithms and low-level control laws. Whereas 
the former module, Guidance and Navigation, is concerned 
with tasks such as localisation, path-planning, state 
estimation, etc., the latter module focuses on transcribing 
these higher level outputs to low-level outputs (for example: 
deflecting a control surface to alter the flight trajectory). 
These modules together can be thought of as the Flight 
Control System (FCS). The field of Guidance Navigation & 
Control (GNC) is where various disciplines within Robotics 
and Aerospace Systems converge. The increasing global 
demand for autonomous flying vehicles with ever increasing 
applications has highlighted certain shortcomings pertaining 
to fixed-wing UAVs. While fixed-wing UAVs offer greater 
operational range, fuel efficiency and payload carrying 
capabilities, they have yet to benefit from appropriate level 
of attention from researchers. 

  There are various challenges a researcher may face with 
in this complex interdisciplinary area of research. The 
inability of fixed-wing UAVs to hover or fly at low speeds 
(relative to rotary wing design) translates to a very 
unforgiving (high risk of crashing) situation for flight tests. 
To avoid collisions and crashes of fixed-wing UAVs, the 
researchers then have to conduct every flight test outdoors, 
which is not necessary for rotary wing designs. Even with 
that problem resolved, researchers are left with the challenge 
of devising autonomous precision landing and take-off from 
designated airstrips. In the absence of that, whether the UAV 
carries scientific-research payloads or is being deployed to 
deliver emergency medical payloads, it remains a high risk 
endeavour. This calls for greater emphasis to be placed on 
the need for higher fidelity mathematical modelling and 
simulation along with means of testing both the software and 
hardware prior to real flight test [1]. In this paper, the 
development of a test bench which utilises common software 
packages, open source codes and hardware, simulation 
software etc. to aid researchers in the field are presented. 

II. TEST BENCH SETUP

A. Target Airframe: FMS SkyTrainer 182

Fig 1: Target RC Airframe 

A 1410mm wingspan RC airframe [2] based on the 
Cessna 182 has been acquired to be used as the target 
airframe. 

B. X-Plane Modelling and Simulation:

Fig 2: Plane Maker & Airfoil Maker X-Plane modelling 

X-Plane 10 is an FAA (Federal Aviation Administration)
certified flight simulator which comes with tools such as 
Plane Maker and Airfoil Maker [3]. Plane Maker enabled the 
construction of a flight model of the target airframe to be 
used by the simulator. Airfoil Maker enables generation 
and/or editing of aerofoil data to enhance the realism of the 
simulation. X-Plane allows communication over the User 
Datagram Protocol (UDP), which makes it possible to 
control the aircraft externally (e.g. with Simulink) and 
capture the live flight data (simulated). 

C. XFLR5 Wing Analysis:

 Fig 3: Wing Aerodynamics analysis on XFLR5 
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The aerofoil data in X-Plane is typically applied to high 
Reynolds' number flows and therefore does not accurately 
model the behaviour of a small aircraft. XFLR5 (based on 
XFoil) is a freely available and open source tool that 
produces reliable aerofoil/wing data for aircrafts in low 
Reynolds' number regimes (50k to 250k) [4]. Given the 
specific geometry of the target aerofoil, it generates reliable 
curves/graphs representing its aerodynamic characteristics 
(polars). This reliability refers to the consistent polars and 
plots that match the experimental (wind tunnel) data for the 
same aerofoil [4]. Therefore, the resulting polars were 
utilised to generate aerofoil data to be used as inputs to the 
X-Plane model. The parameters obtained also aid in the
construction of the simulation discussed in the following
section (section D).

D. MATLAB/Simulink Models and Simulation:

Fig 4: Simulink Simulation of the target airframe 

A 12-state, 6 degrees-of-freedom MATLAB/Simulink 
simulation was developed. The Forces & Moments acting on 
the UAV and associated Flight Dynamics parameters were 
modelled with appropriate first order ODE's. S-function 
blocks [5] were utilised to make custom-blocks for the 
Forces & Moments and Dynamics. This allows for complete 
control over the underlying mathematical equations.  This 
model includes the capability to communicate over UDP, a 
visual output, environmental modelling (e.g. Dryden Gust 
Model [6]), and interfacing with a flight controller. Beard & 
McLain (2012) presents much of the general outline of this 
simulation in the form of skeletal MATLAB and Simulink 
files. However, the researcher must write appropriate codes 
based on suitable mathematical models to make these 
skeletal files functional. 

E. HITL Simulation:

Fig 5: Hardware-In-The-Loop (HITL) simulation test 

The open-source flight controller Pixhawk and flight 
control software PX4 has been used alongside 
QGroundControl (GQC) [7] to establish communication 
between X-Plane and the controller. By modifying the code 
of the FCS, it is possible to test the Pulse width modulation 
(PWM) servo outputs during the Hardware-In-The-Loop 
(HITL) simulation. It is also possible to develop an FCS in 
Simulink and deploy that on the Pixhawk through the 
Pixhawk PSP package [8] for Simulink's Embedded Coder.  

III. RESULTS, DISCUSSION & CONCLUSION

The goal was to present a test-bench that addresses many 
of the problems faced by researchers whilst working with 
fixed-wing UAVs. The mathematical models were 
implemented in the form of a Simulink simulation. X-Plane 
10's built in modelling tools were utilised to create an X-
Plane simulation of the target airframe. One problem with 
such modelling is the absence of quality aerodynamic data 
on the aerofoil being used. It was demonstrated that via the 
use of tools like XFLR5, it is possible to obtain appropriate 
aerodynamic data and improve the simulation fidelity 
without the reliance on resource intensive wind tunnel testing 
or complex Computational Fluid Dynamics modelling. 

Finally, a practical application was demonstrated in the 
form of a HITL simulation. Such simulations allow 
researchers to test the behaviour and performance of the 
flight code in a safe context where modelling errors, 
hardware faults and various other bugs in the overall system 
can be identified and dealt with without risking damage to 
the actual UAV and its systems in real flight. Once actual 
flight tests are conducted and appropriate flight data are 
recorded, the researcher benefits from important insights 
from juxtaposition of the flight data against the two 
simulation's predictions. This allows for fine-tuning of the 
models and higher simulation fidelity. The overall setup 
presented here can also be exploited to conduct studies on a 
range of topics such as Guidance Algorithms, State 
Estimation, Parameter Identification and Sensor Fusion.     
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Abstract—Industry 4.0 highlights a new industrial revolution
for the manufacturing system. This work aims to provide a review
of different types of manufacturing systems and present motiva-
tions of introducing collaborative robots into manufacturing. We
start with a discussion about the existing research of human-robot
collaboration as well as its perception and control strategies.
Then, we give a review of the current applications of swarm
robots in manufacturing. Finally, we propose some insights for
future directions of human-robot society.

Index Terms—manufacturing system, human-robot collaboration,
swarm robotics, cognitive model

I. INTRODUCTION OF MANUFACTURING SYSTEM

The manufacturing system, which is defined as a collection
of labour resources and integrated equipment, is utilized to
process and assemble the raw production materials [1]. In this
section, five types of manufacturing systems are discussed and
compared. We also present the features and potential robot
usage of them as shown in Table I.

Flow shop is a product-oriented system while scheduling the
sequence of order is difficult. Sadik and Urban [2] introduced
a case study which optimizes the scheduling problem with
Human Robot Collaboration (HRC). Cellular manufacturing
which groups similar parts into families and assigns the associ-
ated machines located in each cell into groups [3] implements
the small scale to produce part of a production with one worker
in [4]. Its people-oriented character emphasizes the human
operator’s versatility and flexibility. However, to improve
production efficiency, robot assistance should be added into
the system as another step. Flexible manufacturing system
(FMS) is defined as a production method which is adaptable
for production type and size. Krüger et al. [5] proposed
Intelligent Assist Systems for more flexible assembly tasks.
Reconfigurable manufacturing system (RMS), combining the
flexibility of FMS with the high throughput of a dedicated
manufacturing system, is designed for adapting to the rapid
changes of the market within the same part family. The project
shop aims for large scale products which require multiple
components in the layout like aeroplane manufacturing. Bauda
et al. [6] proposed ’Air-Cobot robot’ for vision inspecting of
production quality.

TABLE I
MANUFACTURING SYSTEM

Manufacturing system Features Potential cobot usage

Cellular manufacturing
High product variation

Highly skilled labour
Task-based HRC to improve efficiency

Flexible manufacturing
High product variation

Highly skilled labour
Intelligent assist system for the variate product

Flow shop
Low product variation

Low skilled labour
Solving scheduling problem and manual labour shortage

Reconfigurable manufacturing
Customized flexibility

Adaptability
Reconfigurable machine tools

Project shop
Large products

Low variation
Air-Cobot for vision inspection

II. COLLABORATIVE ROBOT IN MANUFACTURING
SYSTEMS

A. Industrial tasks for human-robot collaboration

The main advantage of human-robot collaboration in the
manufacturing system is that robots can assist human operators
with sophisticated tasks. In this manner, machines do not
replace humans, but they supplement their ability by getting
rid of heavy work for workers. Unlike the traditional industrial
robots, collaborative robots (cobots) in the manufacturing
system can offer more safety and dexterity. Such Robots, for
instance, rethink or universal robots, can combine the precision
and speed of machines with the proportions and flexibility of
human hands. Another feature is that the robot can learn from
demonstration due to its simplification in programming for
specific tasks.

To allow the robot to better understand the human, several
perceptions are utilized to collect external data to the internal
representation system. Robot vision combines the camera and
software toolkit to enable the robot to obtain visual data from
the world and execute responding physical actions [7],[8],[9].
The impedance control is used to measure the force between
the manipulator and human, and hence infer the relationship
between the force and position [10],[11]. Audition, as sounds
or voice, is another common modality which can be used to
guide intelligent system or communication [12].

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

71

https://doi.org/10.31256/Zb5Dy3B



In manufacturing tasks nowadays, the cobot becomes more
competitive when compared with the human operator and
traditional industrial robots. Many manufacturers are eager
to adopt HRC technology to enhance the effectiveness and
flexibility of their production. Table II demonstrates some
industrial scenarios working with cobot.

As seen in the table, the main tasks where cobots are
involved with the industry are manual assembly tasks. The
human operator is able to operate variant productions while the
work-ability can be restricted by ergonomic factors and hence
influence the accuracy and production volume [13]. Traditional
industrial robots can handle high repetitive and payload tasks,
for instance, the ABB IRB 7600 can handle up to 500kg
materials [14]. However, in complex manual assembly tasks, it
is too expensive to achieve and dangerous to human operators
[15]. The cobot can combine the repeatability from industrial
robots and flexibility from workers. Meanwhile, as the safety
control strategy of cobot is designed for operating among
humans, it can also save work space [16].

TABLE II
SOME STATE-OF-THE-ART IN USING COBOT FOR INDUSTRIAL TASKS

Industrial scenarios Tasks Advantages

BMW[17] Equipping insulation insider door Replace human worker

Audi[16] UR3 cobot for adhesive on car roof Save space

Volkswagen[13] KuKA cobot for screwing on drive train Easier to reach locations

ARM[18] Prepreg for composite layup Reduce human operator’s workload

III. SWARM ROBOTS IN MANUFACTURING SYSTEM

Fig. 1. Cooperative transportation

The industrial robots have
been successfully deployed in
manufacturing for the last
decades. They can be rep-
resented by the static robot
arms which are programmed
to execute the heavily man-
ual, complex and hazardous
tasks. However, the setup of
the layout and the controller
for these inflexible machines
often cost much time and
money when the design of the
product changes. Thus, mobile robots like unmanned ground
vehicle (UGV) and unmanned aerial vehicle (UAV) with
good maneuverability can be appropriately utilized to make
a difference. Moreover, as the manufacturing environment is
dynamic and uncertain, we cannot expect one single robot
to fulfil all the tasks. Therefore, to enhance the efficiency
and robustness of the system, the concept of swarm robotics
which is inspired by the collective behaviours of social insects
can be introduced. The swarm engineering [19] aiming at
overcoming the current limitations of swarm robots is also
addressed to make the robot team collaboratively solve the
real-world challenges in manufacturing.

Although the swarm robots already make some achieve-
ments on the surveillance, mapping and navigation, the ap-
plications in the industry mainly focus on the manipulation
[20], transportation [21], and assembly. A team of drones
transportation scenario is shown in Fig.1. In [22], the authors
develop a new tool which is capable of co-localizing holes and
fasteners for robust insertion and fastening. In the experiment,
a heterogeneous team of four robots with different skills are
assigned to align and fasten a panel to a corresponding box.
The transportation of materials is achieved in [23] using neural
network synthesised by an evolutionary algorithm and [24]
using the leader and follower scheme. Another application
where swarms have been used is logistics as well as the
sorting task in the warehouse. As self-organisation is a well-
known behaviour of swarm intelligence, collective behaviour
is explored for the autonomous goods classification using
ground robots in the real world. In [25], controlled by the
neural network, the swarm of agents called ants are evolved
to perform the patch sorting and annular sorting for the objects
with different shapes in the environment. Currently, aerial
robots haven’t been massively deployed in the factories due to
the problem of stability and battery life except for the project
shop manufacturing system. For example, in the shipbuilding
or aircraft assembly industry, as the position of the layout
is fixed, the material components can be transported into the
product by the aerial swarm [26].

IV. CONCLUSION AND FUTURE PLAN

From the previous review of the collaborative robot, it
is observed that the cobot can combine the repeatability
and flexibility from industrial robot and human operator to
enhance the production efficiency. However, in the existing
cobot application scenario, most of them are task-based and
operated in constrained static environments. Moreover, the
material and information flow of the manufacturing system
is often a problem [1]. For instance, in a project shop, the
work may be interrupted if the material supply is late. The
potential solution can be the combination of swarm robots
and static robots. For instance, if the static cobot can sense the
current workflow and any absence of components based on its
cognitive architecture, it will inform the swarm robots of the
transportation task. In this manner, the manufacturing system
will become more automatic. This paper investigates and
analyzes the current and potential applications of collaborative
robots in manufacturing systems. To deal with the uncertainty
of the market, increasing the automation level of the system by
a massive deployment of the robots in factories is no longer
the priority. It might be necessary to pay more attention to
human-robot and robot-robot interactions so that robots can
be easily reconfigured to collaborate better with the human,
which makes the manufacturing system move closer towards
the standard of Industry 4.0.
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Abstract—This paper proposes a real-time control 
application using deep learning and fuzzy controller to 
create a smart suitcase. This device is a mobile robot that 
automatically follows its owner with the ability to avoid 
obstacles on its way. The deep learning model used in this 
project is based on the efficient technique and state-of-
the-art object detection algorithm – Mobilenet-SSD 
convolutional neural network.  The fuzzy logic controller 
with logical if-then rules forms an effective automatic 
control strategy. This paper presents a proof of concept 
illustrating the integration of fuzzy controller with real-
time object detection and tracking using deep learning. 

Keywords—autonomous robot, mobile robot, deep 
learning, fuzzy controller, embedded system 

I. INTRODUCTION

Machine learning for computer vision, especially 
convolutional neural networks have become popular for its 
diverse applications including face or object detection [1] [2], 
or even signal analysis [3]. Since AlexNet was released and 
won the ImageNet Challenge in 2012 [4], the general trend 
has been to make deeper and more complicated networks in 
order to achieve higher accuracy. However, these advances to 
improve accuracy are redetrimated in terms of size and speed. 
In 2017, Google has announced a class of efficient models 
called MobileNets for mobile and embedded vision 
applications. MobileNets are based on a streamlined 
architecture that uses Depthwise Separable Convolutions to 
build lightweight deep parameters that efficiently choose a 
tradeoff between latency and accuracy [4]. 

Fuzzy logic controller [5] allows flexible and optimal 
operation defining the rules to change vague explanations to 
obvious definitions. Fuzzy sets can be built from human 
experience and perception, which helps to deal with real-life 
situations. The vague boundaries enhance the ability to handle 
uncertainty in mobile robots, which makes fuzzy logic be 
widely implemented from daily products [6] to process 
industry [7] or decision making system [8]. 

Although deep learning techniques have long been 
applied in computer vision, robot vision has a specific 
challenge with real-time operation due to limited onboard 
resources. Similarly, fuzzy logic controller has been used in 
various robot applications, but only with basic automotive 
sensors for robots to compute immediate actions. This paper 
points out a clear approach to combine deep learning and 
fuzzy controller in an autonomous robot. The idea is to design 
a smart suitcase that can follow its user automatically in real-
time, which gives the owner freedom to do another task when 
walking on an airport platform. This model is practically built 
and tested with the aim to contribute to develop devices for 
human utilities. 

II. METHODS

A. Overview

A carry-on suitcase model is designed with four wheels,
two of them are controlled by motors and the others are 
orientable. A Raspberry Pi 3 B+ is responsible for owner 
detection, which is a logo, for tracking. However, due to its 
limitation in real-time image processing, an Intel Movidius 
Neural Compute Stick is integrated with Raspberry Pi and an 
ARM STM32F407 microcontroller is used to control the 
robot to follow its owner and stimultaneously avoid obstacles, 
which are all other objects apart from the specified owner. SPI 
protocol is implemented for communication between them. 

B. Raspberry Pi 3 B+

1) Training deep learning neural network model for
object detection 

 Dataset is created using taken pictures of the specified 
logo with the help of data augmentation, which involves 
creating transformed versions of collected images using 
techniques such as flip, blur adding, rotation, image’s 
characteristic adjustment, etc. Positions of the objects are 
labelled and saved as XML files in default PASCAL VOC 
format. Two classes are defined in order to classify the 
proposed object and background respectively. Cross-
validation technique is applied in creating Lightning Memory-
Mapped Database (LMDB). The training phase takes place on 
Google Colaboratory to make use of the computational power 
of GPU Tesla K40 supported by Google Corporation. 

2) Tracking result transfer

SPI protocol is implemented for data transfer from
Raspberry Pi to ARM, where Raspberry Pi is the master-side 
of the connection. 

C. ARM

1) Fuzzy for owner following: takes the inputs from
owner detecting result to compute two outputs for the 
difference in the two motors’ PWM.   

Input: 
 Position error (ePosition): the difference between

the center of the camera and the center of the
detected frame. The purpose of this variable is to
ensure that the owner is right in front of the
suitcase.

 Distance error (eDistance): the difference between
the height of the detected frame and the expected
height. The purpose of this variable is to ensure a
specific distance between the suitcase and its
owner. Since there can be a lot of interference from
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people passing by, using an ultrasonic sensor for 
distance measurement was crossed out. 

Output: PWM difference value for each motor. 

Rules: Fuzzy rules for owner following are defined in 
TABLE I. 

TABLE I. Object following fuzzy rules for two motors. Noted 
abbreviations: negative big (NB), negative medium (NM), negative 
small (NS), zero (ZE), positive small (PS), positive medium (PM), 

positive big (PB), low (LO), medium (ME), high (HI), negative 
(NE), positive (PO). 

Right motor 
Left motor 

ePosition 
NB NS ZE PS PB 

eDistance 

NE 
NS 
PB 

ZE 
PM 

PS 
PS 

PM 
ZE 

PB 
NS 

ZE 
NM 
PM 

NS 
PS 

ZE 
ZE 

PS 
NS 

PM 
NM 

PO 
NB 
PS 

NM 
ZE 

NS 
NS 

ZE 
NM 

PS 
NB 

2) Obstacle Avoidance

a) Sensors and algorithm

The implemented algorithm is the bubble rebound
algorithm [9]. Accordingly, robots require a ring of 
ultrasonic sensors covering a certain range returning 
results of detected objects on its way. 

Fig. 1. Four ultrasonic sensors cover an angle of 1200 with defined 
sensitivity bubble. 

The robot is expected to move towards the area 
having the lowest density of obstacles [9]. 

b) Fuzzy for obstacle avoidance: takes the calculated
angle from the bubble rebound algorithm together with 
current PWM of the two motors to compute two outputs for 
the difference in the two motors’ PWM.  

Input: 
 Angle: the direction where the suitcase needs to

follow to avoid obstacles.
 Current PWM: the current PWM on each motor.

Output: PWM difference value for each motor. 

Rules: Fuzzy rules for obstacle avoidance are defined 
in TABLE II. 

TABLE II. Obstacle avoidance fuzzy rules for two motors. Noted 
abbreviations: negative big (NB), negative medium (NM), negative 
small (NS), zero (ZE), positive small (PS), positive medium (PM), 
positive big (PB), low (LO), medium (ME), high (HI) , negative 

(NE), positive (PO). 

Right motor 
Left motor 

Angle 
NB NS ZE PS PB 

Current_PWM 

LO 
NS 
PB 

ZE 
PM 

PS 
PS 

PM 
ZE 

PB 
NS 

ME 
NM 
PM 

NS 
PS 

ZE 
ZE 

PS 
NS 

PM 
NM 

HI 
NB 
PS 

NM 
ZE 

NS 
NS 

ZE 
NM 

PS 
NB 

III. DISCUSSION

A. Result

The autonomous suitcase is tested with both indoor and
outdoor environment. It has proved to be able to move
smoothly in real-time owner tracking and obstacle
avoidance. The recorded video is available at this link.

The tracking feature is examined in many cases including
different distances, different rotations, different
background or even when a part of the logo is hidden. The
training phase gains 92% accuracy in logo detection.
Failure cases are found in low-light environment. The
detection speed is around 15-18fps, which allows the
Raspberry Pi to transfer data to ARM with the sample rate
100ms.

Results of fuzzy controller for owner following are shown
in Fig.2. In Fig.2(a), the suitcase starts to move when it is
far from the tag, it moves straight forward as the tag is not
too far to the left or right of the suitcase. Fig.2(b) indicates
the situation when the owner is far to the left, the right
motor moves faster to turn left.

(a) 

(b)  
Fig. 2. Results of fuzzy controller when the owner is a little far and 

around the middle (a), when the owner is far and to the left (b). 

The suitcase model uses only low-cost devices. 

B. Conclusion

The approach in this paper has provided a practical 
application by combining machine learning and fuzzy 
controller theory. Things become easier for engineers to 
make real robots in industry with basic principles and low-
cost electrical components.  
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Game Theory For Self-Driving Cars
Fanta Camara1,2 and Charles W. Fox1,2,3

Abstract—Pedestrian behaviour understanding is of utmost
importance for autonomous vehicles (AVs). Pedestrian behaviour
is complex and harder to model and predict than other road users
such as drivers and cyclists. In this paper, we present an overview
of our ongoing work on modelling AV-human interactions using
game theory for autonomous vehicles control.

I. INTRODUCTION

Autonomous Vehicles (AVs) also called “self-driving cars”
are appearing on the roads. The technology is claimed by
many automotive companies and their arrival on the market
was announced for 2020 [1]. But their future interaction with
other road users raise some concerns. Autonomous vehicles
currently lack of the ability of human drivers to read the
personality of other road users, predict their future behaviour
and then interact with them. A comprehensive review of pedes-
trian modelling techniques for AVs was recently proposed,
ranging from low level sensing, detection and tracking models
introduced in [3] to high level interaction and game theoretic
models of pedestrian behaviour presented in [4].

A European project called CityMobil21 used transport data
science [12] to reveal a drawback of highly safe and perfect
autonomous vehicles. This project launched a trial with an
autonomous minibus in two European cities, in La Rochelle
(France) and in Trikala (Greece). After a few days of driving,
people became used to the minibus and they learnt its driving
behaviour, the AV’s behaviour was easily predictable, as it
would avoid any obstacle by a stop. Thus, pedestrians started
stepping intentionally in front of the minibus [14]. In most of
these cases, the minibus was slowed down or stopped for fun.

This inability of current AVs to accurately predict pedestrian
crossing intent is known as “the big problem with self-driving
cars” [2]. Pedestrians do not exhibit the same behaviour with
human drivers, hence the European project interACT2, to
which this work is part of, is investigating current human
drivers-road users interactions. From these observations, we
are trying to understand how these interactions occur in order
to develop new behavioural models for road users e.g. [13]
[15] [16] and new eHMI (external Human-Machine Inter-
face) solutions that could facilitate the communication for
autonomous vehicles in mixed traffic environments, i.e. with
human-driven cars, cyclists and pedestrians.

1 Institute for Transport Studies (ITS), University of Leeds, UK
2 Lincoln Centre for Autonomous Systems (LCAS), School of Computer

Science, University of Lincoln, UK
3 Ibex Automation Ltd, UK
1https://www.youtube.com/watch?v=ls6xsj fCWU
2https://www.interact-roadautomation.eu/

(a) Game of Chicken (b) Sequential Chicken Model

Fig. 1: Game of Chicken: two agents try to cross over an
intersection as quickly as possible while avoiding a collision.
The first agent to pass wins the game (reward), the second
looses (small penalty) and they are both bigger losers if there
is a collision (large penalty).

II. GAME THEORY MODEL

As a solution to the minibus problem, we started using a
game theory model called the game of chicken, as shown
in Fig. 1a. Game theory is a well-known framework used
for modelling decision-making between rational agents. We
proposed a mathematical model for the game of chicken [13],
a discrete sequential game theory model called the Sequential
Chicken Game, for negotiations between an autonomous vehi-
cle and a pedestrian at an unsignalized intersection, as shown
in Fig. 1b. This model shows that not only the first agent to
yield is more likely to lose the game but also if the AV only
uses its position to signal its intent, there must exist a small
probability for a collision to occur. This collision probability
can be used as a threat for the pedestrian, preventing them
from stepping intentionally in front of the AV.

III. EMPIRICAL EXPERIMENTS

A. Board Game Experiment

A first empirical study [11] expanded the sequential chicken
model using empirical data to measure behaviour of humans
in a controlled plus-maze experiment with participants playing
the game of chicken as a board game. This study provided
an empirical understanding of the human factors required
by future autonomous vehicles. In the first three games, i.e.
natural games, players were simply told to cross over the
intersection as quickly as possible. After playing the natural
games, each group played a further three games in which
specific chocolate rewards were specified in advance, i.e.
chocolate games. With these two game types, we found that
more collisions occurred during the chocolate game than in
the natural game. The results showed that participants had
a preference for saving time Utime rather than avoiding a
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collision Ucrash. Such parameters (Utime , Ucrash) of the
model could be inferred via a Gaussian Process regression.

B. Physical Experiment

We later developed a novel empirical method [5] based
on tracking real humans in a semi-structured environment, in
order to model and predict their behaviour with game theory.
We made use of dynamic programming to compute the optimal
game theoretic solution form, then found the behavioural
parameters via empirical observation and a Gaussian Process
regression analysis. This model formed a step towards game-
theoretic controllers for autonomous vehicles in similar real-
world situations such as negotiations over priority at un-
signalled road-crossings. This second study showed that partic-
ipants were globally playing rationally, 11% of them deviated
from their optimal behaviour. It also confirmed participants
preference for time saving rather than collision avoidance, this
unusual result was due to the high safety conditions of the
experiment.

IV. SEQUENCE ANALYSIS OF PEDESTRIAN-VEHICLE
INTERACTIONS

A. Sequence Patterns Recognition

We collected a large scale data from real-world human road
crossings at the intersection near the University of Leeds,
UK. Pedestrian-vehicle interactions were decomposed into
sequences of independent discrete events [9]. We looked for
common patterns of behaviour that can predict the winner
of an interaction, which can thus be integrated into game-
theoretic AV controllers to inform real-time interactions. We
used probabilistic methods – logistic regression and decision
tree regression – and motif analysis to analyse sub-sequences
of actions used by both pedestrian and human drivers while
crossing. We found predictive features that could inform the
AV about the eventual winner of an interaction.

B. Filtration Analysis

We then used the same dataset of pedestrian-vehicle inter-
action sequences to study the temporal orderings (filtration)
in which features (including signals from the pedestrian) can
be revealed to an autonomous vehicle and their informative-
ness over time during pedestrian-vehicle interactions [8]. This
framework suggests how optimal stopping controllers may
then use such data to enable an AV to decide when to act (by
speeding up, slowing down, or otherwise signalling intent to
the pedestrian) or alternatively, to continue at its current speed
in order to gather additional information from new features,
including signals from that pedestrian, before acting itself. In
this study, we found that the AV should wait and observe about
7 to 10 features before acting/making its decision.

V. PEDESTRIAN INTENTION ESTIMATION

To optimally interact with pedestrians, autonomous ve-
hicles must be able to predict their crossing intent. Thus,
we developed a model inspired by the Sequential Chicken
model. It appeared that a heuristic method, simply based on

tracking data, was found to be very efficient in estimating
crossing intent for most of the interactions [10]. However, this
heuristic model would fail in more complex and maybe critical
interaction scenarios.

VI. VR EXPERIMENTS

As virtual reality (VR) offers the opportunity to experiment
on human behaviour in simulated real world environments that
can be dangerous or difficult to study, we used it to develop
three simple experiments about pedestrian-AV interaction at
non signalized crossings. VR allows us to better understand
pedestrian crossing behaviour in more realistic conditions than
in our previous artificial laboratory experiments and also to
improve the AV game theoretic behaviour model.

In a first experiment [6], we asked participants to cross the
road as they would do in every day life. We recorded their
trajectories in order to learn their behaviour preferences, i.e.
time delay vs collision avoidance. The virtual AV’s decision-
making was based on the Sequential Chicken model [13],
which is a discrete model, thus the car had a slow and a fast
speed. Our analysis of the data showed that participants were
more cautious in crossing and often yielded for the AV.

In a second and third experiments [7], we wanted to learn
from the participants which combination of space and time
parameters (from the game theory model) would make the car
behave more “naturally” and also to discover if there is any
behavioural change in crossing in different environments and
with different car models. Experiment 2’s environment was a
wide tarmac road with a narrower pathway and the AV was
a normal sized-car whereas in Experiment 3 the environment
looked more like a park/garden and the car looked like a small
podcar. Participants were presented each time with an AV that
had different parameters, they were asked whether they found
the interaction with the virtual AV “natural” or “un-natural”,
they had to rate it on a scale from 1 (un-natural) to 5 (natural).
Two methods were used to change the parameters of the car:

• Brute Force: we used predefined orderly sets of parame-
ters one after the other

• Gradient Descent: we started with a hypothetical optimal
parameter and then changed the parameters following the
preferences expressed by each participant.

The results show that pedestrians prefer an AV that makes
its decisions quickly and that pedestrians behave similarly in
different environments.

VII. CONCLUSIONS AND FUTURE WORK

This is a work in progress on self-driving car technology.
We present game theory as a tool to model future human
interactions with autonomous vehicles. Semi-structured em-
pirical and VR experiments with human participants and
interaction sequence analysis provide a better understanding
of human behaviour by inferring their behaviour parameters
using Gaussian Process regression. Future work will look into
developing the game theory model on a real self-driving car
and to test its validity by performing some experiments with
human participants.
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Abstract—We develop a novel machine learning based robotic
strawberry harvesting system for fruit counting, sizing/weighting,
and yield prediction.

Index Terms—machine vision, cascade detector, Harr/LBP
feature, yolo.

I. INTRODUCTION

Strawberries are a high-value crop all around world, but dur-
ing harvest season, due to the weather fluctuations, strawberry
yields can vary greatly on a daily basis. It remains a challenge
for farmers to efficiently manage labour and transport which
rely heavily on accurate prediction of near future production.

Traditional yields estimation is time consuming and labour
intensive. With the maturation of low cost camera sensing and
corresponding vision processing technology, machine vision
has become a potential alternative to traditional way. It has
high adaptivity to variant image quality.

The Viola-Jones cascade detector used here is well sup-
ported in the OpenCV library with both Haar-like feature [1]
and Local Binary Patterns(LBP) feature [7] [6]. Notably it was
the first real-time (CPU-based) face detector and recognizer
[1].

The project was initially low cost CPU-based platform
which was later upgraded with an Nvidia GPU card (GTX
TITAN X). The required expanding and enhancement on
existing functionality, e.g, ripeness prediction, brought our
attention to Deep learning.

Althugh there are already success [3] with deep learning,
this quick development integrated with existing system is
notable. By passing the results of the Viola-Jones detector to
a YOLO (You Only Look Once) [2] [4] based deep learning
system, the classification is achieved in various color category
and improvement on detection accuracy, etc.

II. SYSTEM ARCHITECTURE AND METHODOLOGY

A. System design

The system is shown in Fig.1, where "Video input" of
’back2back’ opposite facing 2-camera provides consecutive
image frame (fps: 30); "Image Tracking" is to track individual
images simply by a template matching strategy to resolve
overlapping, and it reduces the computational cost by opera-
tion conducted only on parsed none overlapped image, which
improved the running speed for detectors as detection doesn’t
need apply on each frame, this makes real time detection

possible and overcomes double counting; "Fruits Detection"
applies a trained cascade detector for strawberry detection. The
cascade detector model has a single class for the full range
of strawberry including flowers; To further split this class
into different categories, the "Classification" used a trained
YOLO model to classify color difference, i.e. green, white and
red, including a leaf model to further remove false detection;
"Count/Size/weight" can provide different metrics for different
purpose, e.g the number of strawberries in different color, with
a pre-defined fruit shape model (e.g sphere, cylinder and cubic,
etc) the metrics such as diameter, circumference, or volume
can be obtained, further combined with strawberry’s density,
the overall harvest weights can be estimated, etc. currently,
a simple method based on the average distance between the
camera and the strawberry rack is applied, which combines
the calibrated camera parameters to calculate the dimension
or volume according to the strawberry shapes; according
to weather condition and farmer’s experience, the "Yields
Prediction" provides guide on the amount of ripe strawberries
for the harvest in different time, etc.

Fig. 1: System Structure

B. Viola-Jone Cascade Detector

Viola-Jones [1] detector is a Harr-like cascade detector,
which can reduce the computational cost on the image in-
tensities. Using a sliding window over the image, Harr-like
features are calculated and compared by the difference from a
learned threshold. While single features are weak learners, a
classifier cascade is used to obtain stronger classifiers by com-
bining them. Viola-Jones takes a variant of adaptive boosting
(AdaBoost) for feature selection and training a detector using
object and background images. A single classifier consists
of a weighted sum of many weak classifiers, where each
weak classifier is a threshold on a single Haar-like rectangular
feature. The weight associated with a given sample is adjusted
based on whether or not the weak classifier correctly classifies
the sample. Haar-like features boost real-time detection for
human faces, but still infeasible for larger image.
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1) Local Binary Patterns features: LBP features [7] [6] uti-
lized here provide a suitable alternative. It is often a powerful
(speed) feature for texture classification. A LBP vector can
be simply calculated in an image cell (e.g 16x16 pixels of
sub-window), where the pixel is compared to each of its 8
neighbors along a circle. The pixel’s value is the concatenation
of a binary "0" and "1", which is assigned by comparing (less
or greater) with each neighbor. This 8-digit binary number is
usually converted to decimal for convenience. The histogram
over the cell for the frequency of each "number" occurring is
computed and regarded as a 256-dimensional feature vector.

C. Deep Learning

YOLO [2] [4] is one of the most effective accurate real
time object detection algorithms. It applies a single neural
network to the full image, and then divides the image into
regions and predicts bounding boxes and probabilities for each
region. These bounding boxes are weighted by their predicted
probabilities, which output the recognized object after non-
max suppression applied.

Because of the small size of strawberry image (24x24
pixels) in Viola-Jones, it can not provide enough information
for precise classification with Haar/LBP feature. We then
utilized a self-trained YOLO model for color-based object
classification to predict the ripeness of strawberries. Without
manual relabeling the existing datasets, an effective and in-
novative integration of state-of-the-art advanced YOLO with
existing system is achieved successfully.

D. Data Sets and Annotation for YOLO

The initial labeled training image datasets (45K) were col-
lected across the world e.g Fig.2 and cropped ones like Fig.3.
Inspired by YOLO training mechanism, without standard
YOLO labeling, the innovative auto-‘one4one’ self annotation
method on existing data is shown below:

center − x = x/w(0.5); center − y = y/h(0.5);width =
w/W (1.0);height = h/H(1.0);
x: x-coordinate of center of the bounding box;
y: y-coordinate of center of the bounding box;
w: width of the bounding box;
h: height of the bounding box;
W : width of the whole image;
H: height of the whole image;

(a) Indoor (b) Outdoor

Fig. 2: Typical Strawberry Image

Fig. 3: Strawberry Training Images

III. RESULTS AND SUMMARY

System was developed with C/C++, and the snapshots in
Fig.4 depict system configuration&monitoring(a), detection
image(b). In (a), the metrics(unit), which is configurable
as request, for sizing and weighting are diameter(mm) and
weights(gram) respectively.

The classification examples in Fig.5 are red strawberry (a),
green one (b) and Leaves (c).

The system was tested on a 80m strawberry growing rack,
through the absolute difference of the numbers between man-
ual and machine counts divided by manual ones, we have
overall (all categories together) accuracy of about 90% on
counting/detection, 95% on classification for red strawberries,
and 80% for green and white color respectively with the
model trained on 300 samples for each category, which can
be further improved by more carefully selected samples added
for training.

The sizing has a threshold above 15mm in diameter, together
with other functionality, we believe the weight prediction can
be improved with more accurate assumed depth measurements,
shape model (cylinder used here) and density setting, etc.

(a) System GUI (b) Detection Outputs

Fig. 4: System Features

(a) Red Strawb (b) Green Strawb (c) Leaves

Fig. 5: System Classification
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Abstract— The SIMPA (Soft- grasp Infant Myoelectric 

Prosthetic Arm) prototype prosthetic arm for toddlers features 

soft ‘fingers’ made from silicone-rubbers. The manual multi-

stage moulding process to produce those soft-fingers presents 

several practical challenges that limit the design freedom and 

degree of customisation. This work demonstrates the potential 

for 3D printing highly flexible and soft fingers (Shore hardness 

60A) that can achieve the desired grasping performance of the 

original gripper fingers by introducing variable infill densities. 

This initial result presented here highlights the potential of this 

approach to further miniaturise and improve upon the initial 

soft gripper design 

Keywords—Soft-Robotics, Medical Devices, 3D-Printing 

I. INTRODUCTION

Soft-grippers are increasingly being explored within the 
field of robotics [1] with a particular focus on delicate 
grasping tasks [2], such as the handling food products like 
strawberries [3]. These soft-grippers have many advantages 
over the traditional rigid systems, primarily the ability to 
passively adapt to geometric features, allowing a wide range 
of objects to be securely grasped. The concept of 
incorporating soft-grippers into the design of a prosthetic arm 
has only recently been explored. The device (Fig. 1), “SIMPA: 
Soft-grasp Infant Myoelectric Prosthetic Arm” [4], presented 
an alternative to the rigid approach taken by other comparable 
devices [5]. This approach proved successful, resulting in a 
device capable of grasping a wide range of objects securely, 
whilst also incorporating safety features such as removing 
sharp edges and pinch points.  

Fig. 1. SIMPA Prototype 

The prosthetic was primarily 3D-printed, with only the 
grippers being moulded. This proved to be a major 
manufacturing challenge, due to the intricate nature of the 
small-scale design, and the requirement for an internal 
structure through which cables are threaded. The result was 
many failed attempts and a forced redesign of the device in 
order to consider the difficulty experienced during gripper 
prototyping. Recently, access to novel soft-filament (COEX-

1 Data-sheet can be found at https://flexionextruder.com/shop/x60-ultra-

flexible-filament-black/ 

Flex TPU 60A1), has opened up the possibility of additively 
manufacturing the grippers directly. The material is one of the 
most flexible fused deposition moulding (FDM) filament 
currently available and has yet to be explored as a means of 
manufacturing soft-grippers. The feasibility of producing wire 
driven soft-grippers for the SIMPA prototype directly via 
(FDM) 3D-printing will be explored here, with the specific 
focus on the effect of infill parameters on the adaptability of 
the soft-fingers.  

II. DESIGN, MANUFACTURE AND INITIAL VERIFICATION

The grippers featured in the prototype device are simple 3-
segmented (2-segments in the case of the ‘thumb’) wire-
driven “finger” like structures (Fig. 2) [6]. The “finger” 
utilises the elastic energy stored within a soft material to 
extend the gripper once the cables driving the flexion are 
relaxed. The gripper is constructed out of two silicone rubbers, 
Smooth-Sil® 960 (Smooth-On, Inc.) and Dragon Skin® 30 
(Smooth-On, Inc). The material properties are such that the 
Smooth-Sil® 960 acts as the spline of the gripper, providing 
the elastic storage required for the extension. Conversely, the 
Dragon Skin® 30 provides a skin like feel and subtleness. 

Fig. 2. Original Silicon-rubber Soft-gripper Design  

In the case of additively manufacturing the grippers, the 
performance of this composite structure must be considered. 
By altering the infill density throughout the design, the 
effective rigidity of the material can be altered; with lower 
infill percentages increasing flexibility. By using this 
approach, it is hoped that the gripper can be additively 
manufactured, whilst maintaining comparable elasticity and 
grasping performance. 

The CAD model of the grippers was imported into Cura 
(Ultimaker BV) for pre-print processing. This model is the 
inverse of the mould used for the original grippers. For the 
initial test a line infill of 25% was used for the more rigid 
spline of the device (Fig. 3). The top surface of the gripper was 
conversely given 0% infill (Fig. 4) to approximate the feel of 
the soft contact pads. The grey box seen in Figures 3 and 4, 
represents a custom infill area, allowing multiple infill settings 
to be used on the same model. 
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TABLE I. OVERVIEW OF PRINT PARAMETERS USED 

 Property Value 

Base Infill 25% (Line) 

Pad Infill 0% 

Number of Top/Bottom Layers 2 

Number of Walls 3 

Top/Bottom Layer Pattern Concentric 

Layer Height 0.2mm 

Nozzle Size/Line Width 0.5mm 

Fig. 3. Reinforcement Infill Structure, Lines 25% 

Fig. 4. Contact Pad Infill Structure, 0% 

The gripper was manufactured on a Lulzbot Taz 6, 
modified with a Flexion Extruder (Diabase Engineering). The 
full detail of the grippers is captured in the print (Fig. 5), and 
takes approximately 2 hours to complete; this compares to an 
average of 2 days when manufactured using silicon, this is due 
to the multi-stage nature of the process and the required cure 
times of the materials used.  

Fig. 5. Printed Gripper Sample with an in-built Passage for Tendons. 

The additively manufactured grippers from an initial 
manual inspection (pulling on a cable threaded through the 
gripper), appear to be slightly stiffer than the silicon version. 
As this is the first attempt, there is no optimisation in terms of 
the print properties or CAD model yet. It is assumed that with 
further refinement it should be possible to improve on this 
performance, in terms of reducing the force required for 
actuation.  

For the supporting structure (replicating the Smooth Sil®), 
it would be simple to set-up a rig that compares the force 
required for a set amount of deformation, characterising the 
relationship between infill and apparent stiffest for grippes 
produced with the COEX-Flex material. The procedure should 
first determine the force required for full contraction of the 
original silicone fingers, to act as a benchmark value. The 
same experimental procedure should then be performed on the 
printed grippers, with various modifications to print 
parameters such infill percentage and pattern, number of 
walls, line thickness, layer height, etc. A relationship between 
these several parameters and the performance of the grippers 
can then be determined.  

To the touch, the grasping surface is considerably more 
rigid than the Dragon Skin® 30 surface of the silicone 
grippers. A Shore Hardness test or comparable procedure 
would need to be used to determine the actual surface 
hardness, though this has not yet been performed.  The internal 
tubes are predominately reason for the increased apparent 
stiffness, as they effectively add additional infill on the top 
surface. The size of these could be reduced as a simple method 
of improving the design. Alternatively, a redesign utilising the 
flexibility in design that 3D-printing offers can potentially 
negate these issues.  

III. CONCLUSIONS AND FUTURE WORK

This paper presented preliminary results on 3D printing 
highly flexible and soft fingers for the previously developed 
SIMPA prototype to address the manufacturing challenges 
with the manual multi-stage moulding of the original silicone-
rubber fingers. The initial gripper design, which was unable to 
be produced by moulding, featured the same geometry but was 
only 10mm wide, rather than 20mm. The small scale 
prevented the inner tubes from being inserted correctly and 
ultimately led to a redesign of the hand utilising 3 grippers, 
instead of 5. The smaller gripper has successfully been 
printed, opening up the possibility for this design concept to 
be re-examined, producing a 5 fingered variant of the SIMPA. 
Further optimisation of the design will be investigated to 
benefit from the design freedom offered by 3D printing. The 
validation would then consist of performing the same 
experimental procedures used to verify the SIMPA prototype, 
using the 3D-printed grippers. The inclusion of 3D-printing 
remains consistent to the ethos of the SIMPA prototype, which 
aims to be predominantly additively manufactured, moving 
away from the traditional approach to producing such devices, 
which still relies heavily on the skill of the craftsman. 

The proposed relationship study between print parameters 
and actuation force would serve a more general purpose to 
characterise the material’s use in FDM printing. This could be 
used in the design of general purpose soft-grippers and in 
other applications where variable stiffness may be required.  
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Abstract — The construction industry is required to deliver 

safe, productive machines. One method being considered by 

heavy equipment manufacturers is autonomy. Implementing 

autonomy to heavy machines is unique, due to the highly skilled 

nature of a machine’s operation meaning that different levels of 

autonomy may be more suitable for different tasks. Therefore, 

effective collaboration strategies between human operators and 

machines are needed. This paper proposes a machine 

architecture that considers the task delegation between the 

operator and machine. 

Keywords — Autonomy, System design, Task delegation 

I. INTRODUCTION 

Many autonomous achievements can be seen within the 
automotive industry, with features such as cruise control and 
emergency braking becoming more common place, guided by 
SAE J3014 [1]. This has been essential for standardising a 
roadmap towards full autonomy for the whole sector for safety 
reasons. A difficulty that is faced by the automotive industry 
is the clarity of task delegation between SAE J3014 levels 2 
and 3, with the end-user being the most notable example. 
There are several examples, such as Tesla’s Autopilot [2], 
where users assume a higher capability than stated.  

The shrinking skilled workforce in the construction 
industry and task complexity means that task delegation 
between machines and operators is a challenge that needs to 
be understood when implementing autonomy. Heavy plant 
manufacturers face this challenge without a standard 
framework to follow. Autonomy can be achieved using 
established strategies like A* [3] and Rapidly-Exploring 
Random Tree but these struggle with task complexities [3]. 

Having a standardised architecture will help heavy plant 
manufacturers implement solutions across several types of 
machines whilst providing clarity of the machine capability to 
the construction industry. This paper addresses the issue of 
task delegation through the development of a novel 
autonomous excavator architecture and identifies 
opportunities to use technology such as Building Information 
Modelling (BIM) and Reinforcement Learning (RL) for a 
more integrated implementation of heavy plant machinery in 
the construction site. 

II. EXISTING LITERATURE

One of the first autonomous excavator architectures was in 
LUCIE [4]. However, this was solely focused on trenches and 
doesn’t seem to have a layered architecture to enable fast and 
slow reactions. LUCIE also required hard-coding actions, 
such as when to curl the bucket, which resulted in less 
flexibility and, potentially, more processing during run-time.  

One company that provides autonomy solutions, ASI, 
proposes a three-stage autonomy system which can be applied 
to different machines [5]. This doesn’t discuss how task 

delegation was decided for automation tasks nor does it 
discuss the scenario of driver assist. It also seems more 
focused on bulk-digging for mining.  

Mastalli et al. investigated a control system that used 
learning and simulation [6] but didn’t investigate driver roles. 
Stentz et al. proposed an autonomous loading system for truck 
loading [7] but this architecture is complex and task specific. 
An aspect that these authors focused on was the visual aspect 
which has advanced significantly. Mastalli et al also discussed 
the advantages of using RL for working in highly constrained 
environments without the need for hard-coding.  

To date, little work has been done on task delegation for 
excavators, despite its importance for developing autonomy. 
Kim investigated task-planning for excavation, which would 
divide the excavator’s project into tasks to be completed [8]. 
This could have been an opportunity to mention how tasks 
could be delegated to operators as autonomy developed.  

There are several examples in literature of human-machine 
task delegation in robotics that can be used to address the 
shortcomings of the automotive sector when applied to heavy 
plant. Sheridan [9] defined four main application areas of 
Human-Robot Interaction (HRI), supervisory control and 
automated vehicles were most applicable to this project. Task 
delegation is often applied to manufacturing with heavy or 
repetitive movements allocated to a robot and infrequent 
dexterous tasks given to a human. Another framework of 
delegation included Task Specification Trees [10], which used 
auctions to delegate tasks as actioned by human requests. To 
delegate, a Delegation Protocol, an extension of a Contract 
Net Protocol, was used. This relied on an internal manager or 
subcontractor that auctioned tasks to several agents. These 
could be based on distance and skillset, depending on the 
requirements.  

One final aspect to consider is the use of turn-taking. With 
the operator and machine working on the same task, 
sometimes it is useful for a robot to take the driver’s turn when 
fatigue is noticeable. Turn-taking is also important as it retains 
driver skill and attention, which makes it a valuable 
consideration for level 2 and 3 autonomy. Turn-taking was 
applied to a social machine [11] where good turn-taking was 
described as having little overlap of the human and minimal 
time spent between turns.  

A crucial consideration is for the machine to know when 
to take control and how to hand it back, which is a notable 
problem for semi-autonomous cars [12]. This is critical in cars 
as the tasks the machine performs are usually at speed, which 
means that unexpected changes can lead to a clumsy 
handover. One review paper [13] discussed task allocation in 
the mining industry, highlighting the importance of human 
operators due to their judgement. Although this paper was 
aimed towards mining, meaning trenching isn’t considered, 
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there are several transferable concepts that can be applied to 
construction.  

III. DRIVER ROLES

An expert operator performed 15 trenching tasks in 
different soil conditions at different operating speeds in 
Mevea [14] to understand driver behaviour and to identify 
autonomy opportunities. The driver over-corrected when 
aligning the bucket to the trench, as seen in Figure 1. This was 
identified as an initial task for a machine to consider when 
operating alongside an expert operator.   

Fig. 1. Slew and boom during trenching, with hesitations circled 

IV. PROPOSED DESIGN

A. Architecture

To accompany the task delegation, a three-layered
architecture made up of planning, control and hardware layers 
has been developed, see Figure 2. The control layer has also 
been designed with human and machine operation in mind 
with a task delegation module (Delegator). The operator and 
controller work together on a task, based on the user needs, 
exchanging information as instructions or feedback.  

Fig. 2. Autonomous Excavator Architecture 

The planning layer is where long-term plans and 
delegation occur. By using turn-taking, control alternates 
between the operator and the controller. Memory contains the 
excavation plans and can be the link-up to BIM, reducing site 
setting-out and providing managers with work information. 
These are divided into tasks that are then delegated to the 
machine and operator.  

In the control layer, designers have the option of 
implementing their own control system and determining their 
own inputs. This split allows the introduction of machine-
learning algorithms, such as RL, to be easily implemented. 
The operator can interrupt the controller and the controller 
informs the operator on its progress as well as identifying if it 

is uncertain for a decision. Training can be done with an 
excavator digital twin, using software like Mevea [14] before 
testing on a real-world machine.  

The hardware layer is where control commands enter the 
CAN bus and control the requested actuators. Sensors receive 
data which then undergo any necessary preparation prior to 
being inputted into the controller. This modular approach can 
then be applied to other machines, reducing costs and 
providing a standard architecture. This is where safety features 
must also be included to ensure a reactive response.  

B. Task Delegation

Performance is not the only factor to consider with
autonomy; autonomous features could lead to operator mind 
wandering, leading to accidents [15]. The transition between 
tasks is also important [12] as there is an adjustment period.  

A turn-taking system addresses operator mind wandering, 
with both the machine and operator given tasks, based on the 
job and autonomy level. Additionally, the machine can ask to 
takeover a task, repeating the task five times and returning to 
position, based on the performance drop of the operator. By 
taking turns, the machine can help to guide a novice and help 
alleviate the workload of an expert operator without 
diminishing expert skills. The actuations that an excavator can 
perform depend on autonomy level, with slew and boom 
identified as the initial tasks. The proposed structure for 
analysing performance is based on actor-critic methods to 
review both the driver and RL’s performance. The turn-taking 
module is shown in Figure 3 along with example operator and 
learning algorithm behaviour. 

Fig. 3.  Turn-taking policy (left) and learner predicting with operator (right) 

V. CONCLUSIONS

A standardised architecture for autonomous excavation 
that considers task-delegation has been proposed within this 
paper, which is simple to implement and flexible for different 
applications. One of the most promising control strategies is 
RL, as it has been applied to several robotics tasks [16]. 
Therefore, it is the focal point for future work because of its 
operator-like behaviour. It also has the potential of being 
flexible enough to be applied to new machines outside of 
excavators and the construction industry.  

The next stage in this research is to implement the 
architecture into real-world machines to confirm 
transferability. Although future work is focused on 
investigating the feasibility of RL, it is also important to 
consider how it can be implemented. Task delegation will also 
include the further investigation of human factors such as 
mind wandering to ensure safety and well-being. 
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Abstract—A human-robot approach for the farm of the future
motivates robotics researchers to consider ways in which auto-
mated devices and intelligent systems can work alongside farmers
to address a wide range of highly specialised but often repetitive
tasks. The work presented here investigates a collaborative task
in which a human and robot share decision making about the
readiness of strawberries for harvesting. Preliminary experimen-
tal results with two different robot behaviours and two different
user groups are compared.

Index Terms—Human-robot collaboration, Agriculture, Com-
puter vision, Machine learning

I. INTRODUCTION

Family farms provide 70% of the food consumed world-
wide [1]. However, because young labour is moving out of
the agricultural sector, the existing labour force is ageing and
the labour pool is not being replenished, the sector faces
many difficult challenges. One strategy for addressing some
of these challenges is to develop intelligent human-robot
solutions in which agriculture involves human farm workers
collaborating with robots to perform a wide variety of tasks.
The work presented here introduces a strawberry harvesting
system, but the techniques could also apply to other high-
value crops. A collaborative human-robot solution to high-
value crop harvesting could entail tasks such as identifying
which fruits are ready to pick, selecting an appropriate position
for a robot manipulator, gently removing the fruit from its stalk
and packing the fruit for shipping.

Along this selective harvesting pipeline, detecting the target
is, without a doubt, a very important step. Recent research
has applied machine learning (ML) to detect fruits among
which variations of YOLO [2]–[4] and R-CNN [2], [5]–[8]
have been proven to work well. However, none of the existing
detection methods can guarantee perfect precision (percentage
of selected answers that are correct) and recall (percentage
of all correct answers that are selected) for the detection
task—there are always some number of false positive (type
I, incorrectly selected) and false negative (type II, missed
selection) errors. Here we test the hypothesis that different
human users will respond differently to these two different
types of errors within the context of selective harvesting.

Supported by China Scholarship Council (CSC).

II. EXPERIMENTAL SYSTEM DESIGN

Basic structure of the setup. Our experimental system
for collaborative strawberry detection includes several com-
ponents: an emulated farm, a mobile robot, a vision server
and a graphical user interface (GUI), as shown in Fig. 1.
In the emulated strawberry farm, 43 high-resolution images
of strawberry plants taken on four different real strawberry
farms are presented. Of the images, 35 contain 51 mature
strawberries in total, 3 contain green strawberries only, and 5
contain only farm background (i.e., leaves, grass, soil). Full-
colour prints of these images are attached to the office corridor
walls near our robotics lab at a height appropriate for the
robot. The robot is a Turtlebot2 holding an Asus Xtion RGB
camera, controlled using the MRTeAm framework [9] and
Robot Operating System (ROS) [10]. The framework enables
the robot to move following a command from the user, and
to take images of the environment around it, which it passes
to the vision server with twin RTX2080Ti GPUs. The vision
server then uses these data to identify ripe strawberries.

Different methods can be applied to the object identifica-
tion process. Here, we employed two different deep learning
detection methods (details below): Faster R-CNN, a typical
two-stage detection network, and YOLOv3, a widely used one-
stage detection network. The user interface receives strawberry
identification and ripeness estimates, as well as raw images.
The user confirms or corrects the robot’s estimate and sends
their decision back to the vision server.

Here we are interested in comparing the responses of
different user groups to different types of errors produced by
different ML methods used to identify ripe fruit. We hope
the results can help us to distinguish more suitable users to
provide feedback for future reinforcement learning tasks and
to choose preferred classifiers for these users.

Neural networks used for identification. Many different
object detection methods can be applied to this system. Since
one of our aims is to test the overarching hypothesis that
people will respond differently to two common types of
classification errors (false positive versus false negative), we
chose two widely used methods for our pilot study.

YOLOv3 is a one-stage detection method, which does the
localization and classification at the same time in a single
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Fig. 1. Components and structure of the setup.

end-to-end network. One stage methods are usually faster
and better able to support real-time operation than two-stage
detection methods. YOLOv3 predicts bounding boxes and
a corresponding “objectness” score for each (best predicted
overlap with ground truth). We started with a YOLOv3
model with pre-trained weights from Darknet-53 that had been
trained on the COCO data set [11]. We then trained it using
145 images drawn from a set of images taken by the authors
at 4 strawberry farms in the UK and China. These images
include 1497 ripe strawberries and 2047 unripe strawberries.

Faster R-CNN is a two-stage object detection approach
that uses convolutional neural networks (CNNs) with two
key components: a Regional Proposal Network (RPN) and a
detection network. These share convolutional layers, making
the model faster and more efficient [12], but can lead to
mismatched goals in feature learning [13]. The Faster R-
CNN used in our experiments follows the network structure
proposed in [12], while the detection network following the
RPN is based on a Fast R-CNN structure [14]. The network
was trained on 540 images from our dataset, containing 3738
ripe strawberries, and 3735 unripe strawberries.

III. EXPERIMENT DESIGN AND RESULTS

Human subjects were instructed to complete two missions,
each with a different robot: one which employs Faster R-
CNN and the other YOLOv3. For this experiment, the major
difference is that Faster R-CNN produces more false positives
while YOLOv3 produces more false negatives when applied to
our experiment setup. To avoid human bias against the named
algorithms, when talking about the two robots with the human
subjects, we named them Robot Felisa for the Faster R-CNN
behaviour and Robot Yasmin for the YOLOv3 behaviour. The
order of missions assigned was randomised. Thirty (30) human
subjects participated, primarily postgraduate students, 15 with
a background in deep learning (the experienced group), 15
with other backgrounds including other engineering commu-
nities, law and linguistics (the non-experienced group). They
were asked to complete a pre-survey, then ran two missions
(each with a different robot behaviour), completed a survey
after each mission and a final survey after both missions. The
survey questions were grouped according to four features:
perceived success, collaboration, trust and speed. The two
post-mission surveys have the same questions, but specify the
name of each robot rather than just generically “robot”. The
order of survey questions was randomised. Answers indicate
any predisposed user bias.

Comparison of classifiers. According to objective data
collected by the system, we found that for the time-related
measures and the total number of strawberries detected, there
were no statistically significant differences between the two
classifiers (using Student’s t-test). However, there were statis-
tically significant differences in the number of true positive
(TP), false positive (FP) and false negative (FN) results. This
trend, with Felisa providing more FPs and Yasmin providing
more FNs, follows our experiment design and was also notice-
able to the users. According to subjective data collected from
surveys, users trust the two robot behaviours equally, but they
prefer Felisa for completing this task faster as well as both in
complex environments and environments with clear pictures,
since users believe that collaboration is quicker with Felisa.

User background comparison. The objective data shows
that there is no significant difference in performance between
the experienced group and the non-experienced group when
collaborating with either robot behaviour. This means that
our system is suitable for users with different backgrounds.
However, the subjective data shows different attitudes towards
the classifiers from different groups of users. As shown in
Fig. 2, the groups of users have different expectations for
collaboration and speed, but the two missions reduced the
difference between them. Overall, experienced users trust
Yasmin more while non-experienced users trust Felisa more.
Considering preferences for different tasks, the same differ-
ence holds for clear pictures. However, both groups prefer
Felisa for complex environments and when speed is prioritised.

Fig. 2. Subjective data from different user groups. Trust, speed and collabo-
ration are reported on a 7-point Likert scale.

IV. SUMMARY

Our results show that our human-robot collaborative straw-
berry harvesting system could be successfully used for com-
paring people’s preferences between the two error types when
working with robots. Experienced users trust the robot that
provides more false negative results and non-experienced users
are the opposite. However, the majority of both groups prefer
to work with the robot that produces more false positive results
when completing tasks in complex environments.
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Abstract—In this paper the task of point cloud semantic
segmentation from RGB-D data in outdoor agricultural envi-
ronments is addressed specifically for the challenges of detecting
trees, obstacles and the safe ground to traverse. A multi-step
framework is proposed to enable real-time processing on an
embedded system for use in wheeled agricultural robots. The
initial step uses a MobileNetV2 based deep learning model to
perform semantic segmentation on an RGB image. A point cloud
is created from the segmentation and depth images which is
then down-sampled, finally RANSAC plane segmentation refines
the final segmentation output. Initial findings show the method
performs well at labelling the desired targets while also running
at up to 9fps on the embedded system.

I. INTRODUCTION

Within computer vision and robotics, point cloud semantic
segmentation (PCSS) has in recent years became an activate
area of research [1]. The aim of PCSS is to provide semantic
labelling to each point in the cloud, this information can
then be used to identify specific objects/areas within an
environment for example pedestrians, trees and roads. This
can provide a robot with contextual understanding of the
environment and therefore can plan and act accordingly.

A variety of different approaches have been applied for
the task of PCSS from a range of different data sources
including RGB-D and Lidar. Methods such as PointNet [2]
and PointSeg [3], perform segmentation in the point cloud
based upon 3D shape matching and edge features, without
the consideration of RGB data. These methods are reliant on
available ground truth data for model training, while available
data sets like Semantic3D.net [4] are limited to urban and
indoor environments. In comparison the RGB domain contains
much richer data sets like the ADE2K [5] which also contains
agricultural scenes.

In this paper a novel multi-step framework for PCSS from
RGB-D data is presented. The application domain for the
framework is wheeled field robots, specifically those operating
in outdoor agricultural environments. The targeted hardware is
an embedded system the Nvidia Jetson TX2, with data from
an RGB-D stereo depth camera the Intel Realsense D435.
The PCSS framework proposed aims to perform segmentation
of trees, obstacles and the ground. This task provides three

This research was funded through Innovate UK (Project 104016)

distinct challenges firstly unlike their urban counterparts which
benefit from distinct roads with relatively flat surfaces, an
agricultural wheeled robot may be required to drive on multi-
ple ground types, i.e gravel, mud, grass some of which have
deeply uneven surfaces. Therefore not only is it important to
identify the ground but also to detect ground areas which may
unsuitable to traverse, to allow safe path planning. Secondly
there needs to be robustness to unknown or incorrectly labelled
obstacles as segmentation models can be prone to error on
unseen object types. Finally computational efficiency is re-
quired to run on the embedded hardware platform. To tackle
these challenges the proposed framework initially employs a
deep learning model to provide semantic segmentation on a
RGB image to exploit the rich data sets in this domain, this is
then refined within the point cloud initially applying intelligent
down-sampling followed by RANSAC plane segmentation [6].

II. PROPOSED METHOD

The proposed multi-step framework for PCSS initially cap-
tures aligned RGB-D frame data from the Realsense D435
camera before performing the three main steps as detailed
in this section. An overview of this framework is shown in
Figure 1. The Open3d [8] Python library was used for creating
and working with point cloud data.

1 2 3 4

Fig. 1. Framework Steps Overview. (1) Captured RGB and Depth Data, (2)
RGB Semantic Segmentation, (3) Point Cloud Creation, (4) Refined Semantic
Segmentation.

A. RGB Semantic Segmentation

Semantic segmentation is the process of predicting a class
label for each pixel in the input image. The proposed frame-
work applies a lightweight model to enable fast performance
on the Nvidia Jetson TX2. A MobileNetv2 [7] encoder with
dilated convolutions [9] in tandem with a single layer decoder
is used and implemented in PyTorch. The model was trained
using the ADE2K training data set [5]. Given an input RGB
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Fig. 2. Point Cloud Semantic Segmentation Results. (Left) RGB Image,
(Centre) RGB Segmentation Output, (Right) Final output, blue denotes safe
ground, red for obstacles and green for trees.

image of n × m × 3, the output of the RGB segmentation
model S is n ×m × 3 where each predicted class correlates
to a specific RGB value.

B. Point Cloud Creation

Given the RGB segmentation output of S, the corresponding
depth image D, a depth scale λ and the intrinsic camera
parameters C = {cx, cy, fx, fy}, a point cloud PC =
{pc1, pc2, ..., pcn} with n points is then generated as:

xi = (uj − cx)× z/fx (1)

yi = (vj − cy)× z/fy (2)

zi = d/λ (3)

where uj and vj are the jth location in D. While cx, cy , fx
and fy are the camera intrinsic parameters. Each point pci is a
vector given by {xi, yi, z}. An associated RGB colour matrix
C = {c1, c2, ..., cn} also exists where ci = {ri, gi, bi}.

C. Point Cloud Down-Sampling and Segmentation

Processing point cloud data can be computationally expen-
sive depending upon the number of points, to reduce this
point removal via down-sampling is used. To retain suffi-
cient detail the following down-sampling method is proposed.
Firstly points corresponding to classes of high confidence
are made exempt from calculation. Confidence is established
via validation of the RGB segmentation model with ADE2K
validation data set [5]. Specific points can be established by the
RGB value of the class e.g. trees in C and removed from PC.
Uniform nearest neighbour down-sampling is then applied.
The PCSS is refined using RANSAC plane segmentation [6].

Final RGB class values are assigned to the relevant points in
C where blue denotes flat terrain and red obstacles.

III. EXPERIMENTS

To produce an initial evaluation two experiments were
performed. One to assess PCSS accuracy and a second to
evaluate computational efficiency on the target hardware. The
experimental parameters were as follows, RGB and depth
image size was 640 by 480. Nearest neighbour down-sampling
was set to 10. RANSAC applied a distance threshold of 0.1,
initial points of 100 and 50 iterations.

A. Segmentation Accuracy

Five rural images were evaluated, varying in ground and
objects types. Figure 2 shows the images and outputs. The
RGB segmentation proves adept at classifying trees, sky,
ground and some obstacles classes such as people. Where
deficiencies in RGB segmentation exist, like a missed bench
object in one image the point cloud based method successfully
detects the obstacle. The PCSS method can also distinguish
flat from uneven ground surfaces, though depth data sparsity
has an impact on some predictions further into the point cloud.

B. Computational Efficiency

Point clouds were tested at depths of 1, 5 and 10 metres.
The five images where each processed 10 times and final
mean values are given in Table I. When depth is 1 meter the
performance is 9fps at 10 meters this is reduced to 5-6fps.
Prior to down-sampling the average points per cloud where
69788 and 220722 for 1 and 10 meters respectively.

TABLE I
MEAN COMPUTATIONAL EFFICIENCY BREAKDOWN IN SECONDS

Step 1 Meter 5 Meter 10 Meter
RGB Segmentation 0.064s 0.064s 0.064s
Point Cloud Creation 0.017s 0.034s 0.038s
Point Cloud Down-Sampling 0.018s 0.049s 0.046s
RANSAC 0.008s 0.018s 0.021s
Total 0.11s 0.16s 0.17s

IV. CONCLUSION

In this paper a framework for PCSS is proposed, the
initial finding are promising providing a foundation for future
research. Using both RGB and point cloud semantic segmen-
tation methods leverages the current strengths of each domain
and aid robustness, for example in detecting missed obstacles
from the RGB domain. The ability to distinguish flat from
uneven terrain is extremely relevant for field robots especially
as this framework runs on a embedded system and RGB-D
camera costing less than £600. There are limitations due to
the qualitative nature of the results, generating ground truth
data regarding ground contours is an area for future research
so more substantial quantitative results can be generated,
while opening up the possibly of applying direct point cloud
segmentation techniques like PointSeg in fusion with RGB
segmentation.
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Abstract—Dementia is a broad category of brain diseases
that is defined as a decline in memory and other cognitive
abilities, severe enough to impede carrying out activities of
daily living (ADLs). There is currently no cure, and accurate
diagnosis and effective intervention is hampered by a lack of
widely available, reliable, and effective forms of assessment. This
paper presents an overview of ongoing research to develop a
framework for continuous assessment of users’ cognitive abilities
based on observed performance of ADLs using non-intrusive
sensing, robotic and AI technology. The ultimate goal is to pave
the way for robotic and other assistive systems constantly in
tune with the needs of their users, as they will be designed using
the psychological insights of cognitive trajectories of normal and
pathological ageing.

Index Terms—Cognitive Assessment, Dementia, Cognitive As-
sistance, Ambient Assisted Living, Robotic

I. INTRODUCTION

The goal of this work is to create an interactive robotic envi-
ronment able to carry out continuous and fine-grained profiling
of the users’ cognitive status by observing and assisting them
during specific Activities of Daily Living (ADLs).

Spotting cognitive deterioration early and finding correla-
tions between cognitive and functional ability over time are
key enablers for better informing diagnosis and personalised,
continuous, and pro-active interventions [2], ultimately leading
to more successful and sustainable treatment [1]. However,
cognitive assessment today is usually performed by trained
clinicians using standardised pen and paper clinical tests [3].
A specialist typically sees a patient every 6 months or annually
[1], leaving large periods of time between assessments.

A number of technologies have already been proposed to
assist people with cognitive impairments and reduce caregiver
burden. For instance, both the COACH and the CogWatch
[7] systems employ sensors and artificial intelligence (AI)
techniques to observe and guide older adults suffering from
dementia or from the effects of a stroke through an ADL
using multi-modal feedback (such as audio/video prompts).
User acceptance and thus effectiveness of these technologies
relies on their ability to fit the different situations, varying
preferences and changing needs of their users, However,
continuous customisation remains a significant challenges in
the field, which hinders widespread adoption [4].

Our approach is informed by psychologically valid assess-
ment practices. We envisage that the system described here
could be hosted in a clinic, initially, as a walk-in testing

facility, where patients’ cognitive abilities can be assessed for
their ability to remember and correctly execute pre-defined
ADLs in a specific context (a test kitchen). However, the
same system should be flexible enough to be eventually fitted
in individual homes, to promote the completion of person-
ally meaningful activities in naturalistic contexts – ideally to
inform caregiving strategies, and enable the continuous and
fine-grained personalisation of other assistive technology.

II. RELATED WORK

Ecological Momentary Assessment (EMA) is one example
of a technology-enabled system designed to reduce depen-
dency from clinicians time. With EMA, patients use phones or
tablets to update the clinicians on a regular basis by completing
a questionnaire remotely. Technologies like EMA mitigate
biases in the clinical setting, and aid in tracking the changes of
cognitive decline over time [1]. However, they require active
and diligent patient participation. Crucially, like their pen and
paper counterparts, their results may not correlate to ADL
performance.

This issue of adherence to periodic assessments is a signif-
icant barrier to the wider adoption of this type of cognitive
assessment. The MARIO project [5] has shown an increase in
the adherence by using a physical robot to prompt questions
to the users. Demonstrating promising results in terms of
increased acceptance and potential benefits of robots employed
as part of dementia care practice [5].

Virtual Reality (VR) systems have also been proposed, as
they can be used to place the users in easy-to-control virtual
scenarios. A particularly interesting example is the VR Kitchen
assessment [6], upon which our approach is based. The assess-
ment is itself informed by the Kitchen Task (KT) [8], in which
people are assisted by an expert while performing pre-defined
tasks in a test kitchen. KT involves evaluating the cognitive
processes that affect task performance and recording the level
of cognitive support necessary for successful completion of
meaningful tasks. VR settings in general make it very easy
to create repeatable conditions and record users’ behaviours.
However, they have been found to poorly reflect real world
performance for the user group, especially because the sensory
perceptions and motor skills exercised in VR are significantly
different from those at play in a real environment [2].
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III. SYSTEM ARCHITECTURE:

Figure 1 illustrates the modular architecture of our system,
and highlights the research questions we are investigating for
its realisation, namely:

Fig. 1. Proposed architecture for automatic cognitive assessment

C - Context Awareness.. How to track primitive actions
(“pick spoon”, “move mug to worktop”. . . ) and complex ac-
tivities (“make tea”, “make sandwich”. . . ) by interpreting data
captured from heterogeneous sensors in actual environments?
Different settings may warrant different approaches. For in-
stance, it would be possible for a walk-in-testing facility to
sense human-object interactions by attaching wireless sensor
devices to all relevant objects, and also install fixed cameras
or employ a robot assistant using optical and depth cameras
to track human actions. The same approach would be too
costly, unpractical and/or undesirable for a home setup, where
solutions should employ non-intrusive and simpler sensors,
and also adopt machine learning techniques, such as Hidden-
Markov Models (HMMs) to infer events from incomplete or
incorrect observations.

A - Analysis. How to decide what (if any) assistance
needs to be provided, and consequently infer the cognitive
health of the user? The component will employ a user model
- essentially a model of users’ cognitive capabilities - and
planning techniques to infer possible user’s errors by analysing
the differences between expected and observed steps, before
deciding whether to assist the user. This may involve providing
clues or issuing prompts, but also requesting some information
from the user, especially in cases when the system does
not have enough confidence on the exact problem this is
experiencing, but also to leverage information that can be
extracted from the verbalisation aspect. The component will
then need to update the user model, by weighting the type of
errors, but also the type of assistance that was necessary for
the user to complete each task.

I - Interaction. How to interact more effectively with the
users? Rather than pre-recorded audio/video feedback, we
are developing a conversational agent to support multiple,
bi-directional conversation flows, and plan to investigate the
effectiveness of both a voice assistant and a social robotic
embodiment. The latter will cover different roles: An observer
and assistant, providing clues, prompts and reminders, but also
to motivate and help the user to carry out and complete the
test. We will investigate suitable affective agent architectures,
to leverage expressive moods and emotions as an integral part
of social interaction, and Reinforcement Learning (RL) tech-

niques, such as Partially Observable Markov Decision Process
(POMDP), to tailor interaction style to each individual.

IV. METHODOLOGY AND EVALUATION STRATEGY

Testbed - The system described in this paper is being devel-
oped at the Robotic Assisted Living Testbed (RALT) hosted
at Heriot-Watt University, Edinburgh Centre for Robotics. The
testbed is a 60m2 fully sensorised smart home hosting a
number of assistive technologies and domestic robots.

Co-Design – Workshops and focus-groups will be used
to bring together stakeholders (patients, carers, healthcare
professional) with the research team, to inform the design
of successive prototypes. A series of user studies will be
carried out to evaluate their technical effectiveness, feasibility,
reliability, acceptability and usability.

Prototype – An initial prototype has been developed using
the smart kitchen and the humanoid robot Pepper (from Soft-
bank Robotics) in the testbed. The OpenHAB smart home mid-
dleware is used to collect information from sensors installed
in the smart kitchen. These include occupancy and magnetic
switch sensors to detect users’ presence and opening/closing
of drawers, and an energy monitor, to detect the use of
kitchen appliances (coffee machine, kettle, toaster). The main
application (a finite state machine where state transitions are
triggered by binary sensor events) is executed on top of the
Robotic Operating System (ROS). The robot assumes the role
of the occupational therapist, instructing and assisting the user
in carrying out the assessment

Next steps – Work is ongoing to record a dataset to enable
further development of the context awareness and analysis
components. The dataset will include sensor data from both
the smart home and the robots’ 3D and optical cameras,
together with video footage of volunteers carrying out multiple
assessment sessions. A first user study is also being planned,
to gather information on users’ experience and interaction
requirements, including a body of training examples to develop
the conversational agent.
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Abstract—In the oil extraction industry, igniting the flare 

stacks is an essential operation. Oil sites have two kinds of flares, 

ground flares and flares that installed on towers. The ignition 

systems generate electrical sparks to burn the gases blowing out 

of the flares. Due to the permanent high operating temperature 

and the need for special thermal isolation, classical igniters have 

low reliability and high cost. In this work, two novel ignition 

systems have been implemented, the first is the robotic ignition 

system for ground flares, it utilises a mobile robot which moves 

toward the flare, avoiding the obstacles in its way and stops after 

detecting the gas, then it starts igniting the flare before heading 

to a safe point with no gas and low temperature. The second 

solution is the automated ignition system to light up the flares 

on the towers, which is a car that moves on a rail vertically, and 

begins igniting once it arrives at the tip of the tower, then it 

comes back to its starting point. As the igniters in both suggested 

systems are movable, so the system will be exposed to the heat 

generated by the flame within a very short time, this new feature 

increases the reliability of the igniter and reduces the complexity 

and the cost of the system. 

Keywords—igniters, microcontrollers, mobile robots, stack flares 

I. INTRODUCTION

The work focusses on the oil industry, and particularly on 
the oil fields where natural gases are occasionally produced 
during the oil extraction process [1]. These gases are 
transported to special torches called flare stacks to be burned. 
Different methods are used to achieve this task, but the most 
popular method uses the electrical spark to ignite the flares [2]. 
These sparks are generated by special electrical devices, and 
then they are delivered to an ignition probe through an 
electrical cable that is located close to the flare [3]. The parts 
of the ignition system that are fixed near to the flare are 
thermally protected using thermal insulators which adds more 
complexity to the system. However, these systems usually 
have a short lifetime because of high operating temperature, 
hence, this reduces the system reliability [4]. The main aim of 
this research is to implement a new ignition system with a 
movable igniter, so it can be positioned close to the gas cloud 
around the flare when it is required to perform the ignition 
task, and then returns to a safe point away from the high 
temperature. Consequently, the system complexity will be 
reduced as no more thermal insulators will be needed, besides, 
the reliability of the system will be raised because the 
exposure time of the igniter to the flame will be very short, 
virtually in terms of seconds. For ground flares, the robotic 
ignition system has been introduced, which is a robotic car 
equipped with motorized wheels and different kinds of 
sensors. With the aid of a special microcontroller and a 
suitable algorithm, it can move toward the flare stack avoiding 
the obstacles; the robot uses a gas sensor to measure the 
density in real-time of the natural gas to determine whether the 
goal is reached. Once the measured value of the density equals 
or more than a threshold value stored in the program, the robot 
decides to stop and start igniting the flare for a while. A fire 
sensor is utilised detect the flame generated after performing 

ignition operation, this helps to verify that the ignition action 
is completed. Consequently, the robot changes its direction to 
move away from the flare and searches for a safe point, and of 
course, it also keeps avoiding the obstacles until the final 
position is reached. For the flares on towers, an automated 
ignition system has been suggested, it employs a car which 
carries the igniter device to be moved on a rail vertically 
toward the flare and ignite it. The automated car also has a fire 
sensor to verify the ignition action just like in the robotic 
ignition system. Both ignition systems mentioned above are 
designed to work with a secondary robot synchronously, the 
secondary robot is responsible for opening a gas valve that 
controls the flowing of the gas from the source (oil well) to the 
flare stack. The robotic or the automated ignition system 
firstly orders the secondary robot to open the valve, to ensure 
the gas is blowing out of the flare before starting the ignition 
mission.  

II. MATLAB/SIMULATION

The artificial potential field (APF) approach has been 
employed in both systems [5]; in this case, the robot will be 
guided in the field to the goal (the flare). The mathematical 

representations for the attractive 𝐹𝑎𝑡𝑡
⃗⃗ ⃗⃗ ⃗⃗  ⃗and repulsive 𝐹𝑟𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗  ⃗ forces

are shown in equations  (1) and (2) which are retrieved from 
[5] and [6] respectively.

𝐹𝑎𝑡𝑡⃗⃗ ⃗⃗  ⃗ =  𝐾𝑔 . (q –  𝑞𝑔𝑜𝑎𝑙)  (1) 

𝐹𝑟𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗  =  
1

𝐾𝑟𝑒𝑝

 𝑒
− 

𝑑𝑖𝑠𝑡 (𝑟𝑜𝑏,𝑜𝑏𝑠)

𝐾𝑟𝑒𝑝  (2) 

The mathematical formulas of robot displacement due to 
both forces used in MATLAB simulation are given in 
equations (3) and (4). 

Fig 1: MATLAB simulation of the robotic ignition System 

𝑑𝑥𝑟𝑒𝑝 = (𝑟𝑜𝑏𝑜𝑡 − 𝑂𝑏𝑠𝑛)𝑒𝑥𝑝
−𝑛𝑜𝑟𝑚(𝑟𝑜𝑏𝑜𝑡−𝑂𝑏𝑠𝑛)

𝐾𝑜𝑏𝑠𝑛 (3)
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Fig 2: MATLAB simulation of the automated ignition System 

Where 𝑛 is the number of obstacles, 𝐾𝑜𝑏𝑠𝑛is a scaling factor,
robot and 𝑂𝑏𝑠𝑛 are the positions for the robot and the obstacle.

𝑑𝑥𝑎𝑡𝑡 = 𝐾𝑔𝑜𝑎𝑙  
(𝐺𝑜𝑎𝑙−𝑟𝑜𝑏𝑜𝑡)

𝑛𝑜𝑟𝑚(𝐺𝑜𝑎𝑙−𝑝𝑜𝑠)
      (4) 

Where 𝐾𝑔𝑜𝑎𝑙 is a scaling factor, robot and Goal are the

positions for the robot and the goal. 

Both systems were successfully tested and simulated. The 
simulation results of the robotic and automated ignition 
systems are shown in Fig. 1 and Fig. 2. 

III. IMPLEMENTATION

The robotic ignition system (the robotic car) has been 
prototyped as shown in Fig 5, using the embedded system 
shown in Fig. 3. The two microcontrollers control robot’s 
motors, obstacle avoidance and ignition action based on the 
real-time data obtained from the equipped sensors. The 
automated ignition system (the automated car on the rail) has 
been prototyped as shown in Fig. 5, using the embedded 
system shown in Fig. 4. The PLC control car’s motors and 
ignition action based on the real-time data obtained from the 
equipped sensors. 

IV. RESULTS, DISCUSSION AND CONCLUSION

To sum up, the output of this work is the implementation 
of the two ignition systems. The first one is the robotic ignition 
system which is designed to serve the ground flares in oil 
fields. Secondly, the automated ignition system has been 
introduced as a solution for the flare stacks on the towers in 
oil fields. In the classical ignition systems, the direct exposure 
of some components to the flame for long periods reduces the 
operating lifetime of the ignition device, the heat usually 
damages these components and then they need to be replaced. 
Moreover, in some cases, there is no opportunity for service 
between major shutdown and this leads to a reduction in 
system reliability [4]. Due to the high operating temperature, 
the igniter and other parts of the system are protected using 
special insulators which bear temperature up to 1100 Cº [7], 
and this increases the complexity and the cost of the system 
dramatically. The unique property of the suggested ignition 
systems in this work is that the end terminal (the part of the 
system that responsible for delivering the spark to the flare) is 
not fixed at the position of the flare, but it is movable, it is 
utilised only when it is needed to ignite the gas cloud, so it will 
be exposed to the fire within a short time in terms of few 
seconds during ignition operation. Hence, this feature could 

reduce system complexity and cost as the igniter no longer 
need a high thermal isolation. Since the exposure time of the 
igniter to the hazardous temperature becomes short, the 
igniters will be more reliable with long lifetime. However, 
although the exposure time becomes short, the external parts 
of the robot and the automated car should be chosen to bear 
the high temperature within ignition operation. In addition, the 
time needed to accomplish the ignition operation by the two 
suggested systems will be longer as compared with current 
ignition systems, it depends on the speed of the robot, number 
of obstacles in its way and how much the ground is sloped. 
Furthermore, the algorithm used in implementing the robotic 
ignition system assumes that the robot always succeed in 
igniting the flare at the first time, but practically it may fail if 
the amount of the gas is low even if its density is high, a future 
work, an extended algorithm is needed to execute several 
attempts that may be required to complete the task. 

Fig 3: The detailed wiring diagram for the robotic ignition system 

Fig 4: The detailed wiring diagram for the robotic automated system 

Fig 5: The prototyped robot and the automated car 
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Abstract—The work presented in this paper explored the use
of a laser line scanner to generate robotic deposition paths for
the repair portion of an automated rail repair system. Currently
surface defects cost the UK around £4 million per annum [1]
, with little traceability being available throughout the repair
process. This paper proposes a robotic repair system primarily
focussed on the development of the deposition system. The
deposition system utilised two different deposition strategies, the
first extracted the weld prep from the point cloud to generate the
deposition paths for the robot and the second measured the height
of the previously deposited material and adjusted the generated
path. This paper focusses on the use of the two algorithms and
the testing completed on a representative geometry, utilising a
caulking gun as a reusable material replacement for the additive
welding system.

Index Terms—Path generation, Rail repair, Hybrid manufac-
turing, Robotic welding

I. INTRODUCTION

The UK rail infrastructure requires constant repair and
maintenance. A key contributor to the cost incurreded are
maintenance costs in the form of rail defects. The work
presented in this paper concentrated on the repair of surface
defects found on the rail. One such defect is named a squat
defect and the UK estimates the cost of squat repair on plain
rail to be around £4 million per annum [1]. An example of
a squat defect, taken at Great Central Railway line in Quorn
station, Leicestershire, UK, can be seen in Fig 1.

Fig. 1. Squat defect taken at Quorn, Leicestershire, UK railway station

Considerable work has been done on automating the identi-
fication and registration of both surface and subsurface defects,
however, little work has been done on automating the repair

Fig. 2. Schematic of the proposed solution for the rail repair system

procedure once the defect has been found [2] [3] [4] [5]. In
the UK this initial defect identification and detection is done
by the New Measurement Train (NMT) run by Network Rail,
coupled with its Plain Line Pattern Recognition (PLPR) system
[6]. The current state of the art in the field of defect repair is
the ARR (Automated Rail Repair) system developed during
the Shift2Rail project [6]. This system uses a predetermined
path and submerged arc welding to deposit material onto an
already existing weld prep. This system, although requiring a
much lower preheat, cannot achieve a full automated repair
process in its current state. Therefore, the research presented
in this paper has suggested a complete rail repair system using
a industrial robotic arm, as shown in Fig 2.

The 2019 report produced by Network rail for Welding
process and technology developments states that weld failure
in Wales is approximately 15%, with the key driver being
the lack of automation and traceability within the welding
process [9]. Therefore, the purpose of this paper is to show the
development, testing and validation of an adaptive deposition
system. The system can be used to add material onto an
already existing weld prep. This weld prep would be generated
by the subtractive subsystem within a fully automated rail
repair system [10].
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II. ADAPTIVE WELDING ALGORITHMS GENERATION

Fig 3 shows the weld prep, used for this work which was
taken from the British Standard for Restoration of Rails by
Electric Arc Welding [11]. The weld prep dimensions used
for the trials were; L =100mm, S=25mm and D=3mm. The
overall width was 70mm, which was equal to the width of the
rail head used.

Fig. 3. Schematic of the weld prep used to generate the welding path taken
from BS 15594:2009 [11]

During the adaptive welding process, there were two algo-
rithms working together in order to create a robust additive
welding process. The initial weld path generation algorithm
was driven by the scan data generated by the laser line
scanner as shown in Fig 4a. This algorithm identified the
weld prep surface within the scan data as shown in Fig 4b,
applying a translation technique for deposition optimisation.
The technique used to extract this weld prep surface utilised
the eigenvalue of the covariance matrix to identify local
changes in the data. The covariance matrix is a statistical tool
where the largest eigenvector indicates the direction of the
data and the second largest eigenvector indicates the second
largest data trend. The magnitude of these eigenvectors are
defined as the eigenvalue. In this case, the covariance matrix
was calculated over a 3mm neighbourhood and a ratio of
the two largest eigenvalues of the covariance matrix was
calculated. This ratio stayed consistent either side of the weld
prep and a large change in this ratio was observed when the
neighbourhood partially included data from the weld prep.
Once the weld prep was extracted, it was possible to use the
points adjacent to the weld prep to create a linear interpolation
between the two sides. This yielded a surface which was used
to recalculate the Z values for the points within the machined
area. This ensured that the repair not only filled the area which
had been extracted, but also accounted for any wear which
would have occurred over time. The outcome of this linear
interpolation and remapping of the points can be seen in Fig
4c, which shows how the final surface should appear once
both the additive system, described in this paper, and final
finishing operation was completed. Finally, the build plane was
extracted and the fill strategy was implemented, an example
of the first layer can be seen in Fig 4d. This fill algorithm was
based on the user inputs, including the estimated bead width
and height along with the step oversize. The fill algorithm
worked by raising the build plane based on the estimated bead
height and then intersecting the build plane with the point
cloud. This generated a layering effect where the subsequent
layer deposition height was adjusted by the second algorithm,
to match the actual bead height deposited on the measured
layer. Such a scan is seen in Fig 5. This allowed, for any

Fig. 4. Scans showing path generation sequence. (a)Original scan data. (b)The
area of interest. (c)Repaired rail. (d)Deposition path for the first layer

difference between the bead height input by the user and the
real-world bead height to be corrected for. This algorithm
works on the highest 20% of Z values within the deposition
area and fits a plane to those points. This plane was then used
to adjust the next layer’s Z values in order to adjust the weld
path.

These adaptive welding algorithms undertook preliminary
testing using a caulking gun, with caulk used as an additive test
replacement to the metal of the welding process. This allows
multiple attempts on the same piece without the need for part
re-manufacturing. Both algorithms can be viewed functioning,
with their outcomes in Fig 5, which shows the penulimate
layer deposited. This Figure also shows the height adjustment
algorithm working.

Fig. 5. Scan data showing the path being updated to avoid collisions

III. CONCLUSION

The initial testing proved that it was possible to extract
the weld prep from a rail head using the covariance matrix.
Moving forward this path generation will be tested on a
representative flat plate in order to fine tune the welding
parameters including the amperage, voltage and the pre-heat
temperatures. Once these parameters have been tuned, the path
generation will be tested on the representative geometry using
the welding equipment. The final step will be to re-validate
the testing carried out on the flat plate on a piece of real rail.
This will, in turn, provide valuable information and validation
of the deposition subsystem of this repair system.
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Abstract—Soft robotic actuators are a very promising tech-
nology to enable use of robotic manipulators in scenarios that
are inaccessible to traditional robots. However, their design and
fabrication is a laborious process, especially for users with little
knowledge of CAD software and 3D printing. The skills and time
necessary for making the moulds used to create such actuators,
leaves the process open for human errors and design variations,
making accurate and repeatable experimental testing difficult to
achieve. To reach a better understanding of this new technology,
extensive and detailed experimental work should be undertaken,
but this is currently hindered by the time-consuming design
process. The design software presented in this paper provides
the soft robotic community with a user-friendly design tool for
generating 3D printed moulds that the users can customise to
their needs. The tool aims to simplify the design process for soft
robotics and to also make this technology accessible to users
without extensive engineering background.

I. INTRODUCTION

Soft robotics is an emerging field within the robotics com-
munity. Their bio-inspired nature allows them to use them for
a wide variety of scenarios. Novel soft robots design have
been developed based on animal and human biomechanics;
for example, an octopus project has shown that robots using
soft materials can perform tasks that would not be achievable
with ‘hard’ materials [1]. Soft robots can be designed to
perform more than one task, so that unstructured or bespoke
tasks in chemistry and biology labs can benefit from their
adaptability and their ability to bridge the gap between humans
and conventional ‘hard’ robotics [2].

Fig. 1. Soft Robot Actuating
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II. CORE COMPONENTS AND FABRICATION

The most common design for soft actuators is Fluid Elas-
tomer Actuators (FEA). Such actuators are composed of a
series of inflatable chambers mounted on top of a flexible
substrate. As each chamber inflates, air exerts a pressure on
the chamber’s walls. Given that the inner walls of the chambers
are thinner than the other walls, they bulge outwards and make
contact with each other, thus providing a force that causes
the actuator to bend. A typical example of FEA undergoing
actuation is shown in Fig. 1.

The typical fabrication process for producing a FEA con-
sists of three steps: mould design, mould manufacturing, and
moulding process [2]. When designing the mould, the actuator
geometry needs to be determined according to the desired
properties and mechanical response of the actuator itself.
Typically, the mould is designed on 3D CAD software and
it is sectioned into components. The main body consisting of
a union of parts A and B (see Fig. 2) and a tray is used to
enclose the bottom of the actuator. The main body and tray
are manufactured separately and then joined together using a
thin layer of silicone.

Fig. 2. Example of 3D CAD of a mould produced the automatic design tool:
Part A (left) and Part B (right).

There are four essential components that need to be de-
signed to create such moulds, as shown in Fig. 2: chambers
(P4), air channel (P5), supports (P3/6) and the base [3]. The air
channel runs parallel through the actuator and it is responsible
for allowing air to pass through into each chamber. The inner
and outer supports are placed to aid the joining process of the
main body and the tray, ensuring the air channel and chambers
are not impeded by the uncured silicone solidifying. The base
encapsulates the chambers and provides a flexible surface to
induce bending.

III. AUTOMATIC DESIGN TOOL

A software tool was developed to automate the design and
fabrication of the mould process. The software aim was to
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provide well-designed moulds based on a limited number of
user-defined inputs and to prevent the occurrence of human
errors and streamline the design process. The proposed tool
uses the 3D model builder OpenSCAD and a bespoke Python-
based graphical user interface to automate the design.

The main GUI of the design tool consists of input boxes
allowing the user to set: chamber width, length, depth, spacing,
number of chambers and tray height (see Fig. 3). The code
uses the number of chambers and chamber dimension inputs
to calculate the length and width of the whole actuator, and
it design layers P1/2 using these values. The chambers are
then placed along the length of the actuator using arithmetic
progression, alongside a central air channel (P5) connecting
all of the chambers. The air channel and inner supports height
and width are dependent on a proportional ratio applied to
the chamber dimensions, empirically tuned based on testing
on a wide range of actuators. The complete Part A mould
dimensions, calculated by the code, are then used as inputs
to generate Part B and the tray. The tool then outputs three
STL and SCAD files in the chosen location which the user
can directly use to 3D print their moulds.

Fig. 3. GUI to select the actuators geometry.

IV. EXPERIMENTAL RESULTS

To test the capability of the code, various designs were
produced with varying chamber widths, lengths, height and
number. Such moulds were then 3D printed using an Ultimaker
S5 printer with PLA filament, and then used to fabricate soft
actuators. Finally, the soft actuators were tested to show that
the automated design tool can create functional actuators (see
Fig. 1) [4]. The ability to design moulds and actuators at a
fraction of the time required by manual design allowed the
creation of a large amount of actuators to perform a parametric
study on how geometry affects the actuator’s mechanical
response [5]. For the purpose of this paper, the software was
used to prove how changing the width of the actuator chamber
affects the tip force. This is complementary to the linear
relationship between height and tip force reported in [3] [6].
Taken together, these results can form the basis for optimising
FEA design based on desired mechanical response.

The initial testing was conducted by clamping the actuator
and measuring its tip force at a range of pressures. Experi-
ments were conducted on three actuators of the same length
and chamber number. The first two actuators were made from
silicone M6401 (Bentley Materials, UK), the second one had
an increased chamber width of 5mm. The third actuator was
made from Dragon Skin (Bentley Materials, UK) and matched

the dimensions of the first. As shown in Fig. 4, increasing
the actuator width almost doubles the resulting tip force.
This suggests that using materials with lower Young’s moduli
allows larger variations of tip forces for limited changes in
input pressures.
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Fig. 4. Force vs. Pressure for three actuators

V. CONCLUSION

In this paper an automatic design tool for soft robotic
actuators is presented. The availability of this tool will allow
researchers to streamline the design of such actuators and
to perform parametric studies on the influence of geometry
on the actuator response. As an example, preliminary results
regarding the relationship between chamber width and tip
force are presented. The modular and open-source nature of
the presented tool will enable encompassing a wider range
of soft actuators in the future. The tool is available at
http://www.liv.ac.uk/paoletti/public/softdesigntool.zip

To further validate the tool, analytical results will be linked
with the design tool to create an input for the desired tip
force range of the actuator. The tool will generate the opti-
mal internal geometry to achieve the required force so that
actuator design can be optimised based on the applications
they will be used for. A variety of moulds will be produced
to experimentally verify the tip force output.
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Abstract—Active inference provides a framework for decision-
making where the optimization is achieved by minimizing free-
energy. Previous work has used this framework for control
and state-estimation of a robotic manipulator. This required
manual definition of precision matrices which serve as controller
gains. This paper provides an implementation for control and
state-estimation where the precision matrices are tuned during
execution-time (precision learning). Learning the precision ma-
trices means automatically adjusting the controller’s gains which
decreases oscillations and overshoot.

Supplementary Material

Code and further material is avaiable at: https://github.com/
MoBaioumy/active inference panda paper.
Video: https://youtu.be/Ii1Ig1Lt0Xk

I. INTRODUCTION

Modelling all time-varying dynamics for a robotic manipu-
lator a priori is infeasible. Therefore, intelligent robotic manip-
ulators require adaptive behaviour, e.g. to reject disturbances
or to handle objects of unknown masses [1].

Recent approaches in robotics have taken inspiration from
active inference [2], a theory of the brain prominent in
neuroscience. Active inference provides a framework for
understanding decision-making of biological agents. Under
the active inference framework, optimal behavior arises from
minimising variational free-energy: a measure of the fit be-
tween an internal model and (past) sensory observations [2].
Additionally, agents take actions that allow reaching preferred
future observations specified a priori.

In [3], an active inference controller (AIC) for joint space
control of robotic manipulators is presented, which outper-
forms the state-of-the-art Model Reference Adaptive Control
(MRAC) [4]. This approach performs both state-estimation
and control, and avoids scalability issues by requiring a fixed
number of parameters, such as precision matrices (inverse
covariance matrix). These precision matrices act as controller
gains and thus affect performance properties such as oscilla-
tions, overshoot and rise-time.

In this paper, we present an approach for precision learning,
i.e. learning the precision matrix. We show that by having an
adaptation step to learn the precision matrices in execution
time, which is derived from the same active inference princi-
ple, we are able to automatically adjust the controller’s gains,
henceforth decreasing oscillations and overshoot.

II. METHOD

Active Inference considers an agent in a dynamic environ-
ment that receives an observation o about a state s. The agent
then infers the posterior p(s|o) given a model of the agent’s
world. Instead of exactly calculating p(s|o), which could be
computationally expensive, the agents approximates p(s|o)
with a ‘variational distribution’ Q(s) which we can define to
have a standard form (Gaussian for instance). The goal is then
to minimize the difference between the two distributions. This
can be computed using the KL-divergence [5]:

KL(Q(s)||p(s|o)) =

∫
Q(s) ln

Q(s)

p(s,o)
ds + ln p(o)

= F + ln p(o).

(1)

The quantity F is referred to as the (variational) free-energy
-or Evidence lower bound- and minimizing F minimizes the
KL-divergence. If we choose Q(s) to be a Gaussian distribu-
tion with mean µµµ, and utilize the Laplace approximation [6],
the free-energy expression simplifies to:

F ≈ − ln p(µµµ,o). (2)

Now the expression for variational free-energy is solely depen-
dent on one parameter, µµµ, which is referred to as the ‘belief
state’. The objective is to find µµµ which minimizes F ; this
results in the agent finding the best estimate of its state.

A. Problem statement
In this work we consider low-level joint control for a

robotic manipulator. The state of the robot is given by its
joint position, velocities, µ̃̃µ̃µ = [µµµ,µ′µ′µ′]. Note that in the Active
Inference framework the state given by position and higher
derivatives is also known as generalised motions [7]. We also
consider observations given by joint encoders, õ = [o,o′],
which are the main source of information about the state.

As in [3], we aim to obtain a control law for the state µ̃̃µ̃µ
from the Active Inference framework as well as the robot joint
state µ̃̃µ̃µ given the observations õ. However, we also derive
learning rules for the parameters of the distributions (precision
matrices), which allow us to adapt the controller online.

B. Observation model and state transition model
Following [3], the joint probability from Equation (2) can

be written as:
p(õ, µ̃̃µ̃µ) = p(õ|µ̃̃µ̃µ)p(µ̃̃µ̃µ) = p(o|µµµ)p(o′|µ′µ′µ′)︸ ︷︷ ︸

Observation model

p(µ′µ′µ′|µµµ)p(µ′′µ′′µ′′|µ′µ′µ′)︸ ︷︷ ︸
Transition model

,

(3)
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Fig. 1: Results comparing the active inference controller with and without precision learning.

where p(o|µµµ) is the probability of receiving an observation o
while in (belief) state µ, and p(µ′µ′µ′|µµµ) is the state transition
model (also referred to as dynamic model or generative
model). The state transition model predicts the state evolu-
tion given the current state. These distributions are assumed
Gaussian according to:

p(o|µµµ) = N (µµµ,Σo), p(o′|µ′µ′µ′) = N (µ′µ′µ′,Σo′),

p(µ′µ′µ′|µµµ) = N (f(µµµ),Σµ), p(µ′′µ′′µ′′|µ′µ′µ′) = N (f ′(µ′µ′µ′),Σµ′),
(4)

where the functions f(µµµ) and f(µ′µ′µ′) represent the evolution of
the belief state over time. This encodes the agent’s preference
over future states (in this case the preferred future state is
the target state, µdµdµd). We assume: f(µµµ) = (µdµdµd − µµµ)τ−1 and
f ′(µ′µ′µ′) = τ−1µ′µ′µ′, where µdµdµd is the desired state and τ is a
temporal parameter.

Using the previous equations, we can expand F to:

F =
1

2
(εoεoεo
>Σ−1o εoεoεo + εo′εo′εo′

>Σ−1o′ εo′εo′εo′

+ εµεµεµ
>Σ−1µ εµεµεµ + εµ′εµ′εµ′

>Σ−1µ′ εµ′εµ′εµ′

+ ln |Σo|+ ln |Σo′ |+ ln |Σµ|+ ln |Σµ′ |) + C,

(5)

where εµεµεµ = µ′µ′µ′− (µdµdµd−µµµ)τ−1, εµ′εµ′εµ′ = µ′′µ′′µ′′+ τ−1µ′µ′µ′, εoεoεo = o−µµµ
and εo′εo′εo′ = o′ −µ′µ′µ′ and C refers to constant terms.

C. Estimation and control

To achieve state estimation and control, we perform gradient
descent on F using the following update rules:

˙̃µ̃̇µ̃̇µ = Dµ̃̃µ̃µ− κµ
∂F

∂µ̃̃µ̃µ
, (6)

ȧ = −κa
∂F

∂a
= −κa

∂F

∂õ

∂õ

∂a
, (7)

where κa and κµ are tuning parameters depending on the
desired behaviour, and D is the temporal derivative operator.

D. Precision learning

Precision learning refers to learning the inverse covariance
matrices, also referred to as the precision matrices. This is
done using one-step gradient descent [8] as:

˙Σ−1o = −κσ
∂F

∂Σ−1o
, ˙Σ−1o′ = −κσ

∂F

∂Σ−1o′
. (8)

Now, using Equations 6, 7 and 8, the manipulator can
perform state-estimation, control and precision learning. Since
in Equation 7, we use the chain rule with respect to the
observations, Σ−1o and Σ−1o′ are the matrices that show up in
the control law.

III. RESULTS

We evaluate the presented approach and use the active
inference controller (AIC) from [3] as a benchmark since the
authors have shown their work outperforms MRAC.

Consider a manipulator moving between three different
configurations (see supplementary video or section 5 of [3]).
If the AIC is tuned properly (Σ−1o = 1.5I , Σ−1o′ = 0.5I ,
Σ−1µ = 0.1I and Σ−1µ′ = 0.5I), this results in satisfactory
behaviour. In this case, I refers to the 7x7 identity matrix.
However, if we perturb all diagonal elements of Σ−1µ by
random values between 0 and 0.2 during initialization, the
controller suffers from oscillations. Our approach overcomes
this issue by performing precision learning. We update Σ−1o
and Σ−1o′ for the first two seconds during operation which
allows the controller to ‘self-tune’. Results are shown in Figure
1. This shows the performance of the AIC and our approach
for a single run. Using our approach, all joints show almost
no sign of oscillations.

IV. CONCLUSION

In this work we perform state estimation, control and
precision learning under the active inference framework. The
approach is tested (on the Panda Emika Franka) against
previous work and shows the ability to damp oscillations when
the precision matrices are not properly initialized.
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Abstract—Nowadays, we are surrounded by virtual 
assistants in everyday life. But one domain that is assumed to 
massively benefit from virtual assistants, is manufacturing. In 
particular, where activities are reliant on human expertise and 
knowledge, a virtual assistant could help support the human. 
The vision of this work is inspired by the need for bringing an 
assembly system more rapidly to an operational state. To 
achieve this vision, a decision-support framework that aims to 
better integrate the human operator into the ramp-up activity is 
proposed. As part of this framework, natural language 
processing tools are applied to allow the development of a 
virtual assistant for the ramp-up process. This paper provides 
an overview of the current work in progress, which is part of a 
PhD research undertaken at the Intelligent Automation Centre 
at Loughborough University. It outlines the initial efforts and 
future steps that have been completed and are planned. 

Keywords—Ramp-up Process, Natural Language Processing, 
Natural Language Generation, Chatbot, Decision-support, 
Industry 4.0. 

I. BACKGROUND

Being able to adapt to increasing demand and 
customisation of products rapidly is crucial for the 
competitive strengths of manufacturing companies. Thus, 
manufacturers are required to assemble a new or tweak an 
existing production system and getting it to full production in 
a very short time. Despite these two processes bearing 
similarities, the scope of this research work is on the former. 
This process of bringing a system from a low level to full 
volume operation takes place during the so-called production 
ramp-up [1]. Ramping up a system requires the human 
operator to perform process and equipment adjustments based 
on his/her knowledge and expertise as part of an iterative 
process (Fig. 1). Simply put, once the system is in place, it will 
be tested with certain settings to verify if the required Key 
Performance Indicators (KPIs), such as functionality, product 
quality, cycle time, etc., are fulfilled [2]. In the unlikely 
situation, where this is the case, the ramp-up process is 
finished. The more common situation is that a change to the 
physical setup or the process needs to be made. This cycle 
repeats until the KPIs are ultimately met. As can easily be 
figured, ramp-up can be a very time-consuming activity [1], 
as due to the uniqueness of each case it makes it heavily reliant 
on the expertise and intervention of a human [3] that can vary 
extremely among different people. 

During recent years, the understanding that technology 
and human require a better interaction to achieve successful 
production ramp-ups has urged manufacturers to rethink their 

strategies on mainly relying on the human [4], [5]. As more 
and more data become available in the manufacturing domain 
nowadays through an increased level of end-to-end 
digitisation and automation, also referred to as Industry 4.0, 
improved monitoring of real-time ramp-up processes can be 
supported [4]. An important research subject that has been 
identified through literature is the improvement of knowledge 
capture, reuse and communication during the ramp-up to 
minimise disturbances due to loss of human knowledge. 
Surprisingly, few researchers have thus far proposed a suitable 
learning approach and assisting tools (software) for ramp-up 
[6]. When asked about the function of technology for future 
ramp-up processes, studies indicate [7] that it will play an 
important role during ramp-up management, whereas the 
human will be tasked with problem-solving.  

Fig. 1. Overview of the decision-support framework for plug-and-produce 
assembly systems in contrast to current ramp-up process practice.  

The idea presented here is part of an ongoing PhD research 
work, which mainly aims to reduce the ramp-up effort and 
ultimately shorten the ramp-up time for plug-and-produce 
assembly systems. The main objective will be to create a 
decision-support framework, which will guide a human 
operator in making adjustments to the equipment and 
processes of the ramped-up system. One aspect of the 
proposed decision-support framework includes a module that 
makes use of Natural Language Processing (NLP) techniques 
to extract knowledge from captured data and transform it into 
a meaningful semantic representation. Thus, the hypothesis 
that is addressed by this work is the following: “Providing 
shop-floor operators with a virtual assistant during the ramp-
up process will reduce the number of trials required to ramp 
up a system.” As such, relevant information will be made 
available in a way that the operator’s decision-making for 
quick system adaptations is supported. This paper presents the 
idea of a virtual assistant for the operator to provide 
recommendations in the form of a chatbot.  

The research leading to these results has received funding from the 
European Union’s Horizon 2020 research and innovation programme under 
grant agreement No 680735, project openMOS (Open Dynamic 
Manufacturing Operating System for Smart Plug-and-Produce Automation 
Components). Funding from the Engineering and Physical Science Research 
Council Centre for Doctoral Training in Embedded Intelligence (grant no. 
EP/L014998/1) is also acknowledged. 
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II. METHODOLOGY

To create a useful decision-support mechanism, formal 
means of extraction, analysis and interpretation of meaningful 
data related to human problem-solving are required. For this 
work, human expertise is captured in natural language during 
the ramp-up via a developed Graphical User Interface (GUI) 
as this is a very intuitive way for humans to converse. These 
data are enriched with data about the system state in terms of 
process and equipment settings, current and target KPIs. This 
ultimately allows forming a knowledge base, which contains 
historical data and information from previous ramp-up 
scenarios. For this research work, a prototype virtual assistant 
represented by a chatbot has been developed to provide 
support to the human in a natural means of communication. A 
chatbot can be described as a type of conversational or 
dialogue agent that can engage in a natural language 
conversation with a human, usually through a keyboard. The 
general information flow between the chatbot and the human 
can be described as seen in Fig. 2.  

Fig. 2. Simplified Request-Response flow between human and chatbot.  

For this research work in progress, a straightforward GUI 
using Python’s Tkinter has been developed to allow the user 
to engage with the chatbot (Fig. 3). Where the human uses the 
keyboard to type and send a message, the chatbot uses other 
Python libraries such as NLTK, Keras and TensorFlow to 
build the conversation. The underlying model that is used here 
is a Keras’s Sequential deep learning model [8]. For example, 
the operator can enquire about certain settings by asking 
questions related to the individual equipment, such as the 
nozzle diameter in the given case study explained later. The 
chatbot reacts to certain identified keywords based on which 
it chooses its answer. 

Fig. 3. Current chatbot interface for the virtual ramp-up assistant.  

As can be seen, the conversation is currently still very 
limited and needs enhancements to allow for more detailed 
questions and answers. One difficulty that was, however, 
encountered is that many machine learning approaches rely on 
the availability of sufficient data samples in order to be able to 
provide meaningful insights about reoccurring patterns. This 
poses a challenge for the use of these methods during ramp-
up as little data are available at that time. Additionally, it has 
been found that existing chatbot implementations are mostly 

trained on movie or other reviews. The manufacturing domain 
as a corpus is not yet sufficiently addressed. As such, data 
have previously been collected from a manual dispensing 
experiment to better understand human decision-making for a 
dispensing-like task which will serve as an input to the 
proposed chatbot. The data allowed to extract change actions 
that achieved the necessary KPIs, but also highlighted certain 
issues that were encountered. By creating a knowledge base 
with this information and providing it to the user through the 
chatbot, it is assumed that the trial and error approach 
conventionally taken in the ramp-up process can be 
minimised. More information about the data and the 
experiment itself can be found in [9]. 

III. CASE STUDY

In order to be able to test the usefulness of the proposed 
approach in the near future, an industrial use case of a 
dispensing process has been developed (cf. Manufacturing 
System in Fig. 1). The objective of this experiment is to tune 
parameters on the setup to obtain products of good quality. 
There are three product variations and each participant will 
have to repeatably create at least one and until you reach the 
required quality. Good quality is defined by straight and 
continuous lines, with no excessive dispensing material and 
close similarity to the given target pictures. The setup’s key 
component is a single 6-axis industrial robot (ABB IRB120), 
which is connected to an IRC5 controller. Toothpaste, to 
simulate a dispensing process, is dispensed in a controlled 
manner through a nozzle that has been mounted to the 
surrounding frame as the robot will manipulate the metal 
workpiece. An automated time-pressure dispensing unit 
(Fisnar JB1113N) is used. If any of the process or equipment 
parameters are, however, not set fittingly, the desired product 
quality and performance will not be achieved, and the 
adjustment step needs to be repeated. More information about 
the setup can be found in [10]. To validate the underlying 
hypothesis of this research given in the introduction of this 
paper, two sets of participants will be asked to perform a 
ramp-up scenario on the aforementioned glueing workstation. 
The first group will solely rely on their knowledge and 
equipment manuals, whereas the second group will, in 
addition, have access to the developed chatbot. By comparing 
the usage and difference in time required to ramp-up the setup 
to full production state, the usefulness of the proposed virtual 
assistant for the ramp-up process can be evaluated. 

IV. CONCLUSIONS AND FUTURE WORK

This paper is part of an ongoing PhD work looking into 
reducing the time required to get a system to full production. 
This stage, also known as ramp-up, is still very human-centric 
and error-prone. As part of the overall PhD research aim to 
provide a decision-support framework, one aspect is the 
development of a virtual assistant for the operator undertaking 
the ramp-up process. This virtual assistant will be provided in 
the form of a chatbot, which allows the operator to enquire 
about certain settings or issues that have previously occurred 
in similar cases. The chatbot can give recommendations about 
change actions that can be applied to the system or other useful 
information. This chatbot is currently under development and 
its usefulness and, thus, the verification of the introduced 
hypothesis will be tested on the case study introduced 
previously. This will be achieved by dividing the participants 
into two groups, for which one will have access to the chatbot, 
whereas the other will rely on their sole knowledge and 
expertise. 
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Abstract—A new approach is presented to estimate the 

motion of a mobile platform using a fusion of visual odometry 

(VO) and wheel odometry (WO).  An Extended Kalman Filter is 

used with an augmented state vector including the wheel slip.  

The new approach allows for flexible use of VO, which is central 

to slip estimation but consumes significant electrical power.  The 

approach can be used in the future to adaptively optimise the 

number of VO measurements. 

Keywords—mobile platform, Visual Odometry, wheel slip, 

Extended Kalman Filter 

I. INTRODUCTION

Autonomous navigation on other solar system bodies, like 
Mars, face many interesting challenges. One of the critical 
problems is precise localisation. Without easy access to on-
demand global position measurements, relative localisation 
techniques, such as Visual Odometry (VO), are of the essence. 
Furthermore, VO has the additional benefit of allowing to 
measure wheels slip which in case of Mars can contribute to 
over 10% of error in the position estimate [1]. Precise and 
beneficial as it may be, VO requires considerable computation 
effort and relies on good illumination, resulting in significant 
electrical power demand. For a Mars rover, just like for any 
spacecraft, the power budget is carefully balanced, and it 
cannot spend any more energy than estimated. For future Mars 
missions, such as European’s Sample Fetch Rover, the rover 
is expected to drive for much longer distances than any other 
remote missions to date [2]. This objective poses another 
technical challenge of how to minimise energy usage while 
maintaining accurate localisation and maximising distance 
travelled. In this paper, we use a novel Extended Kalman 
Filter formulation to explore the trade between VO use and 
navigation accuracy.  

II. RELATED WORK

Many different algorithms and strategies may be 
employed to optimise energy usage and increase localisation 
accuracy. In their work, NASA presents how VO 
measurements taken by Mars Exploration Rover (MER) and 
Mars Science Laboratory (MSL) rover are used to estimate 
slip and support trajectory control [3], [4]. Different power 
optimisation strategy was presented in [5] where the 
optimisation was achieved by introducing an intelligent 
controller to command wheels based on the soil type. This 
approach requires parameters tuning but may lead to a more 
efficient drive. Another solution is to recognise terrain in front 
of the rover to adapt to the scenery. So far this has been 
presented as either prediction of slip for better trajectory 
planning, where rover can avoid high-slip areas to preserve 
energy, [6] or the overall scenery classification to switch 
between different sensors which may either optimise energy 
usage or increase localisation precision [7].  

Often VO is used to estimate wheels slip. In [8] authors 
present how slip can be estimated using Inertial Measurement 
Unit (IMU); however, in their approach, calibrated wheels 
angular velocity is still fused with VO. 

III. APPROACH

The proposed model represents only 1D motion and is 

presented on Fig. 1 with p being the position, v – velocity,  - 

wheels accumulated angle, Ω - wheels angular velocity,  - 

slip, and R – wheels’ radius. Both  and  are treated as 

process noises that drive the model, where  is interpreted as 

wheels angular acceleration and  describes the terrain. The 
system has been discretised with a step size of 0.1 s with state 
vector defined in (1).  

x(t) = p(t) (t) Ω (t) (t) m(t)T   (1) 

To model VO, the state vector is augmented with m, defined 
as the position at which the last VO image was recorded:  

𝑚(𝑡+) = {
𝑝(𝑡) if VO measurement at time t
𝑚(𝑡) otherwise

 (2) 

Then the two odometry measurements (wheel odometry (WO) 
which measures wheels accumulated angle and VO which 
measured delta position) are expressed as: 

𝑦𝑊𝑂(𝑡) = θ(𝑡) + 𝑊𝑂(𝑡) (3) 
𝑦𝑉𝑂(𝑡) = 𝑝(𝑡) − 𝑚(𝑡) + 𝑉𝑂(𝑡) (4) 

where  denotes the respective measurement noise and noting 
that the VO measurement is not taken at every update. 

Wheel slip is modelled using a first-order filter driven by 
an unknown process noise. This approach means the slip 
uncertainty grows with time, but not unboundedly as a random 
walk, and has a tuneable ‘forgetting’ factor to capture the 
variability of terrain.  The gain parameter of the filter was set 

to one as it is a scaling factor for the  noise, which models 
all-terrain properties related to the slip. To simplify this 
evaluation, we assumed no skidding or breaking; therefore, 
the slip is defined as presented in (5). 

(t) = 1 - v(t)/ [R*Ω (t)]  (5) 

This research is part of PhD opportunity funded by SCISYS UK Ltd. 

Fig. 1 Block diagram of the proposed model 
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IV. RESULTS AND DISCUSSION

The model has been validated using data from real-world 
experiments where Mars-like rover with Real-Time 
Kinematic (RTK) GNSS for ground truth (as presented on Fig. 
2) was driving on two different types of terrain: tarmac and
grass. All graphs from Fig. 3 present sets of trajectories that
lasted for 500 s. The rover speed was 0.2 m/s, and WO
measurements were done at approximately 10 Hz frequency.
Graphs on the left-hand side present how changing VO update
rate impacts estimated position errors and their three standard

deviation (3) boundaries. All trajectories, except for one
which happened on a hilly grass terrain, are always within
estimated precision. Performing VO measurements more
often (e.g. Fig. 3 VO @ 0.2 s) leads to narrower three standard
deviation boundaries due to high frequency of precise position
measurements. With decreased VO update rate (e.g. Fig. 3 VO
@ 3 s), the model maintains its accuracy for most of the
trajectories; however, errors tend to be greater since the filter
leans more towards WO estimates. Graphs on the right-hand

side present how changing  affects position estimation. Low

values (e.g. Fig. 3 =0.01) indicate relatively constant slip,
and therefore the filter prefers to trust WO measurements
more. In this case, VO is mainly used to measure the slip value

indirectly. On the other hand, high  value indicates terrain
where slip may change dynamically, therefore the VO

measurements are preferred (e.g. Fig. 3  =2). Also, because
of more dynamic changes, more noise into position
measurements is introduced, which is visible as saw-tooth on
three standard deviation boundaries.

V. CONCLUSIONS

This paper presents a new model for fusing wheel and 
visual odometry on a mobile robot. We successfully validated 
the proposed model against the real-world data captured using 
representative Mars-like rover. The results suggest that the 
model correctly predicts navigation uncertainty levels as the 
frequency of VO measurements change.  Further research will 
use this model to pursue an adaptive controller capable of 
optimising the number of VO measurements to trade accuracy 
against electrical power usage. 
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Abstract—When localising an object in a confined environment
using an indoor positioning system (IPS) based on ultra-wideband
(UWB) technology and an asynchronous time difference of
arrival (TDoA) algorithm, systematic errors do occur. Theoretical
estimation of these errors can be very hard to make. This study
introduces a novel filtering algorithm for reducing the bias of
position estimations, therefore increasing their accuracy. The
problem is tackled for a two-dimensional IPS by formulating
a debiasing filter using statistics of real data. Generalisation to
the three-dimensional case should be straightforward.

Index Terms—indoor positioning system (IPS), accuracy, bias,
precision, time difference of arrival (TDoA), ultra-wideband
(UWB)

I. INTRODUCTION

In robotics and autonomy, positioning systems constitute a
remarkably important technology. A variety of systems exist,
which are aimed at different applications and make use of
different algorithms (e.g. Time Difference of Arrival (TDoA)
or Two Way Ranging) and different forms of energy (e.g. elec-
tromagnetic or sound waves). For example, Global Navigation
Satellite Systems (GNSSs) are appropriate for efficient out-
door long-range positioning, while Indoor Positioning Systems
(IPS) based on ultra-wideband (UWB) technology present
crucial advantages in indoor spaces, namely high accuracy
and the ability to penetrate obstacles [3]. It is important to
emphasise that UWB positioning constitutes one of the most
accurate and promising technologies for IPSs, arguably the
best choice at present [3], [4]. A major drawback is given
by its susceptibility to interferences, which may be caused
by metallic materials and/or by systems working on similar
frequencies.

This work builds on a previous study on the signal and
geometrical properties of a general IPS [11]. In that study,
the unbiased Cramér–Rao Lower Bound (CRLB) analysis
for the reference IPS estimated that the precision inside the
convex hull defined by the anchors was within ±3 cm whereas
the bias could not be assessed theoretically. Furthermore, an
analysis based on [5]–[9] was performed in order to define the
localisation boundary – i.e. the bifurcation envelope. Using
the available IPS, this work aims to assess if the theoretical
prediction of precision in [11] is correct and to estimate the
order of magnitude of the bias. These data are subsequently

used for the development of a debiasing filter aimed at
increasing the accuracy of the position estimations. The state
of the art of currently used IPS is the Extended Kalman Filter
(EKF) developed by Mueller et al. [1], [2]. However, there are
systematic errors that the EKF does not deal with, as observed
in the experiments and acknowledged in [1]. The proposed
debiasing filter is an attempt to find a solution to this problem.

II. DESIGN OF EXPERIMENT ON IPS

The purpose of the IPS under study is to localise a moving
object based on a spatial distribution of transceivers (anchors)
using an asynchronous TDoA algorithm. The designed exper-
iment aims to provide the precision and accuracy maps of the
position measurements obtained with an IPS. These maps will
be used by the subsequently introduced debiasing filter.

The IPS in question, which is depicted in Fig. 1, consists of
a drone to be localised and four transceiver anchors positioned
at the vertices and facing the centre of a square domain. All
the antennae are at a height of 20 cm from the floor. The drone
is on a moving stand equipped with a laser pointer, which is
aligned with the onboard UWB antenna in order to achieve
reference positioning of high precision (±1mm) and accuracy.
The equally spaced markers stuck to be floor are the sampling
positions, as shown in Fig. 2.

Fig. 1. Diagram of the setup of the studied 4×4 m2 IPS for 2D localisation:
(a) are the adjustable stands of the (A0-A3) transmitting anchors antennae, (b)
the measurement points regularly distributed every 50 cm in both directions,
and (c) the mobile stand for the object to be localised.
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Fig. 2. Precision mapping (±xσ) of the
x component of the position. The sampling
points are the magenta squares.

Fig. 3. Accuracy mapping (xb) of the x
component of the position. The sampling
points are the magenta squares.

Fig. 4. Debiasing surface (xβ) for the x component
obtained by cubic spline interpolation of the estimated
scattered debiasing values (xβij ).

In order to build the maps, a large number of measurements
(N = 700) are taken at a sampling frequency of 100 Hz
while keeping the drone still for at least 30 seconds on each
marker (Xij). Then, the raw stream of data is post-processed
getting rid of the transients corresponding to the movement
between markers. The drone is kept aligned with the x axis
and parallel to the floor, as the effect of its direction is not
being investigated. Finally, the bias (b), standard deviation (σ)
and mean squared error (MSE) are computed. For instance,
their values in the x direction (superscript x) are as follows:

xbij = N−1
∑N

k=1 x
(k) −Xij

xσij =
(

xMSEij − xb2ij
)0.5

xMSEij = N−1
∑N

k=1

(
x(k) −Xij

)2 (1)

where x(k) is the kth position measurement. The resulting
maps can be found in Fig. 2 and Fig. 3.

III. FORMULATION OF DEBIASING FILTER

The objective of the debiasing filter is to correct the raw
EKF estimation of the position (x = [x, y]

T) so that the
filtered position (x̂) is approximately the same as the actual
real position (X = [X,Y ]

T). The debiasing filter on the sample
points described in Section II should provide the real position.

From the definition of bias and variance in (1), the measure-
ment on a reference point can be factorised into (2): the real
position, the bias, and a random fluctuation (R) which is a
function of the standard deviation. Note that both b and σ are
functions of the real position. For the proposed formulation,
R will be neglected even if this affects the quality of the filter.

xij = Xij + xbij + ����R (xσij)
xbij = xb(Xij , Yij)
xσij = xσ(Xij , Yij)

(2)

Since the input of the filter is going to be the estimated
position, but the bias map in Fig. 3 is a function of the
real position, a change of domain is needed. As implicitly
suggested by (2), the change of domain is expressed as in (3).

In this case, the debiasing value will be simply the raw bias
with opposite sign, i.e. xβij = −xbij .

X̄ij = Xij + [xbij ,
ybij ]

T (3)

Hence, the obtained debiasing values are no longer functions
of the real position (which is unknown) but are function of the
measured position. As shown in (4) for the x direction, the
sampled debiasing discrete distributions βij in both directions
can be interpolated over a deformed grid [X̄ij ,Ȳij], obtaining
debias surfaces that are functions of the measured positions.[

X̄ij Ȳij
xβij

] interp.→ xβ(x) (4)

For instance, in Fig. 4, xβ(x) is described by a simple cubic
spline. Since the debiasing filter must be applied in real time,
a more efficient interpolation method will be considered in the
future. Finally, the debiasing values can be directly added to
the measured position obtaining the filtered estimation x̂:

x̂ = x+ xβ(x) ŷ = y + yβ(x) (5)

IV. CONCLUSION AND FUTURE WORK

An experimental evaluation of the distribution of variance
and bias of positioning estimations was performed. The preci-
sion values are bounded by ±3cm as predicted by a previous
theoretical study of IPSs [11]. However, the accuracy level was
unsatisfactory. In order to increase it, a data-driven debiasing
filter was formulated. The debiasing surface obtained is a
function of only the biases measured on a discrete number of
points. At present, this work is being extended towards a more
comprehensive filtering procedure aimed at increasing both
precision and accuracy. The debiasing filter being developed
will also consider the variance. In addition, interpolating neural
networks will enable three dimensions. The experimental
platform will be further improved and employed for tests
and validation of these filters. Furthermore, the developed IPS
with high precision and accuracy will also be used for indoor
experiments to test multi-agent self-coordination and collision-
avoidance algorithms – e.g. in [12].
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Abstract—We propose a new pipeline to facilitate deep learning
at scale for agriculture and food robotics, and exemplify it using
strawberry tabletop. We use this multimodal, autonomously self-
collected, distributed dataset for predicting strawberry tabletop
yield, aiming at informing both agronomists and creating a
robotic attention system. We call this system the augmented
agronomist, which is designed for agronomy forecasting, and
support, maximizing the human time and awareness to areas
most critical. This project seeks to be relatively protective of
both its neural networks, and its data, to prevent things such as
adversarial attacks, or sensitive method leaks from damaging
the future growers livelihoods. Toward this end this project
shall take advantage of, and further our existing distributed-
deep-learning framework Nemesyst. The augmented agronomist
will take advantage of our existing strawberry tabletop in our
Riseholme campus, and will use the generalized robotics platform
Thorvald for the autonomous data collection.

Index Terms—deep learning, database, agriculture, nemesyst,
thorvald, strawberries

I. INTRODUCTION

Machine/Deep learning is becoming a bigger and more
important part of our daily lives through the rise of an ever-
increasing quantity of available data. 3rd-party services use
machine learning in combination with user data for tasks
ranging from, natural language processing [5], image recog-
nition, diagnosis [3], detection, classification [6], generation,
imputation, broadly prediction; medical diagnosis [2], self-
driving cars [8], facial recognition [7], etc. However one area
with which deep learning has remained relatively stagnant
is in agriculture, where data is scarce, forcing the use of
remote sensing datasets or the like, as well as the existing
research using classical techniques without many of the recent
advances. [1, 4, 13] The primary reason why agriculture has
remained relatively constant for this long is likely the lack of,
and consistency of data, but also the lack of willingness, and
trust of the growers/ agriculturalists to release their potentially
sensitive techniques latently in any data they provide. Thus if
there is little to no data there can be little advancement with
deep learning techniques, meaning prospective research will
require self collected data to find any meaningful relations be-
tween the features and targets with which to predict accurately
and far enough ahead to facilitate timely and effective actions.

This work is supported by a BBSRC CTP-FCR studentship and InnovateUK
under grant agreements #105151 and #104587

We contribute our work-in-progress methods and results
towards creation of a larger and more accurate plant yield pre-
diction framework which both automates but crucially involves
experts in a time-effective and prescribed manner. Our work
is facilitated by the RASberry research programme1, which
is a collaboration effort between UoL, Saga Robotics, and
BerryGardens, funding autonomous strawberry data collection,
under our direct control. This involves the generic expandable
Thorvald platform, which is an autonomous robot ready for
use in many terrains. Thorvald is an ideal candidate platform
to use for our own experiments thanks to its autonomy, and
available resources. The only drawback of using strawberries
is that they are only grown from late June to early October.

II. PLANT YIELD PREDICTION LITERATURE

As it stands there are many existing methods that have been
used to attempt to predict crop yield, using data such as remote
sensing [16, 4], satellite image, climate conditions, geolocation
data, etc. [9] However, there is high variation in the type,
quality, and quantity in the datasets used, with very little from
a standard dataset with which to use. [14, 16, 15] The vast
majority of papers use remote models relying primarily on:
temperature, humidity, precipitation, and soil moisture. Some
others attempt image based approaches but lack of data is a
serious problem for them [13]. This means as far as yield
prediction is concerned it is necessary to create a consistent,
and granular dataset [14]. All these papers use many different
techniques, with a wide variety of data types such that they
only marginally narrow the focus for our data collection efforts
to things such as climate conditions, [10] meaning we will
have to collect a large variety of data and thereafter assess the
correlation to achieve the best results.

III. TECHNIQUES

As depicted in Fig. 1, we use Nemesyst [11, 12] to manage
MongoDB instances across all desired Thorvalds. We aggre-
gate this data to the distributed database layer, where all the
data is made available to offline back-end deep learning sites.
These sites are responsible for training, and model evaluation
of neural network models (NNs), along with packaging them

1https://rasberryproject.com
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Fig. 1. RASberry data distribution and aggregation pipeline.[11]

back into the database for unpacking and use at a local level.
These NNs can then be selected based on their performance
and suitability to the application, such as the most performant
yield prediction of strawberries versus other berries. The
selected NNs used locally can then be used in future to inform
decision making processes of the robot, such as attention
mechanisms. Attention mechanisms can be used with our
databases as a message passing interface to alert and request
the attention of specialist agronomists to identify uncertain
cases and help with learning along with any immediate control
needs.

IV. RESULTS

In the 10-12 fruitful weeks, before the first frosts in October,
of June-bearing strawberries, we managed to collect in excess
of 40GiB of compressed data (+100GiB if uncompressed),
consisting of regular plant imaging, and environment sensing
thanks to our Thorvald robots. This data represents a diverse
set of scenarios containing:

• 3 still images (RGB, depth, IR, position) every 20cm
at various plant angles, and the respective environmental
data (temperature, humidity, etc) locally to the camera.

• Continuous environmental data every 15 min. throughout
the year, including the lead up to the growing season.

• Stationary camera footage, and its local environment data
every 30 minutes for select plants to provide in depth
growth and performance data.

• Video based plant image capture during tabletop traversal.
• Yield/ picking data for the number of strawberry punnets

collected over time.
However due to constraints in human time, we could only

collect yield values twice a week, meaning this last dataset
is still relatively small, and would in future need to use

TABLE I
TIME SERIES FORECASTING OF YIELD BY NUMBER OF PUNNETS.

Technique Mean Absolute Error (Test set)
Vanilla Recurrent Neural Networks 0.210
Long Short-Term Memory 0.381
Gated Recurrent Units 0.155

autonomous pickers to provide more, and consistent labels to
our NNs, to train more advanced NNs. Table I thus shows
some very early experimental results that demonstrate the
ability of various recurrent networks to learn with this limited
labeling. Due to the size of the data and how early on in the
process we are our results (I) are split plainly 80% training,
20% testing, with around 10-13 epochs for saturation taking
less than a few minutes to train using only environmental and
yield data at this early stage.

V. CONCLUSION

It has been shown that using distributed Nemesyst database
pipelines for data aggregation and modelling as well as
distribution in more complex scenarios such as autonomous
agricultural data collection, how this can augment the ability
of growers to collect data and predict outcomes such as crop
yields. A need has been identified for more autonomous data
collection to collect more data along with more consistency
to feed to NNs to learn more complex representations. Lastly
our pipeline can also be used as message passing interfaces for
agronomists to monitor, be alerted of any uncertain/ unusual
cases, label difficult examples, and potentially control the
robots to support their efforts. Our next step is to provide
certainty metrics to assess how certain the deep learning
models are of the result in such that this can be used for
more effective decision making.
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BeetleBot: A Multi-Purpose AI-Driven Mobile Robot for
Realistic Environments

Anh Nguyen1, Erman Tjiputra2, Quang D. Tran2

Abstract— We present BeetleBot, a new mobile robot that
has been developed to operate in realistic environments. Differ-
ent from previous state-of-the-art mobile robots, BeetleBot is
designed based on the most recent advancements of actuator,
mechanical design, and artificial intelligence. These advantages
allow the robot to have powerful features including ultra-
mobility, accurate localization, intensive AI ecosystem, and
autonomous navigation in normal as well as complex and rough
terrain environments. Based on its novel design, BeetleBot can
be used in a variety of tasks including but not limited to
autonomous delivery, exploration and surveillance, or human-
robot interaction. Besides the development of the robot, we also
build large-scale open-source simulation models that are fully
integrated with ROS and can be used for rapid testing and
deployment of any robots. Finally, we show the capability of
BeetleBot and the performance of each individual AI module
in various tasks and real-world scenarios.

I. INTRODUCTION

Mobile robotics is a long-lasting research and develop-
ment field in both academia and industry [1]. In general, a
mobile robot is designed to autonomously move through its
environment without the need of a human operator or on
a fixed predetermined path. The mobile robots are usually
equipped with an array of sophisticated sensors that enable
them to understand, interpret, and act inside the environment,
which help them to perform its tasks in the most efficient
manner and possible path such as navigating around fixed
or moving obstacles (e.g., building, people, and debris).
Based on the natural advantages of its design, mobile robots
are widely used to work independently or collaboratively
with humans in various real-world applications such as
logistics (e.g., autonomous delivery), inspection and main-
tenance (e.g., inspection robot), security and defense (e.g.,
surveillance robot), agriculture (e.g., fruit picking robot), or
urban transportation. Especially, with the recent Coronavirus
pandemic, the need of a human-friendly mobile platform that
can assist patients in the hospital or be used in healthcare
services in general is increasing significantly.

Although there are currently many mobile platforms avail-
able, they all share two main limitations: i) Most of the
mobile robots are designed for a particular problem, hence
it is not a trivial task to adapt and use the robot in a
new task. ii) The integration between hardware, software,
and AI for mobile platforms is still a challenge during the
deployment. Motivated by these limitations, this paper aims
to develop a new mobile platform for remote or autonomous

1Department of Computing, Imperial College London, UK
a.nguyen@imperial.ac.uk

2AIOZ Pte Ltd, Singapore quang.tran@aioz.io

Fig. 1. An overview of BeetleBot, a multi-purpose AI-driven mobile robot
and its external sensor system.

operation in real-world scenarios. Our new robot - BeetleBot
- has flexible maneuverability and strong performance to
traverse through doorways, over obstacles or rough terrains
that may be encountered in indoor, outdoor, or rough terrain
environments. Coming with state-of-the-art sensor system
and novel AI-driven software, BeetleBot can perform a
variety of useful tasks autonomously. Fig. 1 illustrates an
overview of BeetleBot and its visual sensor system.

II. DESIGN METHODOLOGY

To build a robot that can perform various tasks in realistic
environments, our design methodology focuses on three main
aspects: i) Robust mechanical design, ii) AI-driven software
framework, and iii) Testing and deployment. We discuss in
detail each aspect below.

Design: Maneuverability is the key aspect in mechanic
design of a mobile robot. Unlike most of the current mobile
robots which use 4-wheels design, we adapt the rocker-bogie
mechanism [2] to allow the robot to operate in different
terrains. The rocker-bogie design has 6-wheels with no
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(a) RGB Image (b) Sample Trajectory (c) Traffic Detection (d) BeetleBot in Action

Fig. 2. Illustrations of our simulation environments, detection results and BeetleBot in action. From left to right: (a) A RGB image from our city
environment. (b) The path generated by the autonomous navigation network of the robot (denoted as the red line). (c) The traffic recognition result. (d)
Our BeetleBot is in action when crossing a slope.

TABLE I
SPECIFICATIONS OF BEETLEBOT

Specifications

Dimension L750 × W500 × H600 mm

Environment Indoor, outdoor, complex terrains

Payload Max 20kg

Mobility Max speed: 800 mm/s, 90 degree/s

Wheel 6 wheels, 4 steering drive, 150mm diameter

Battery 10 hours running time, auto charge

Interface Mobile/Web app, joystick, voice, autonomous

Communication Wireless 802.11 a/b/g, 4G, digital audio in/out

Computing 8-Core ARM v8.2 64-Bit CPU, NVIDA Jetson

springs or stub axles for each wheel, allowing the robot to
climb over obstacles (e.g., rocks, debris) easily while keeping
all 6-wheels on the ground. In order to go over an obstacle,
the front wheels are forced against the obstacle by the back
two wheels. The rotation of the front wheel then lifts the
front of the vehicle up and over the obstacle. The middle
wheel is then pressed against the obstacle by the rear wheels
and pulled against the obstacle by the front until it is lifted up
and over. Finally, the rear wheel is pulled over the obstacle
by the front two wheels. During each wheel’s traversal of
the obstacle, forward progress of the vehicle is slowed or
completely halted. Above the rocker-bogie, we currently
design a cargo for keeping packages. Most of the visual
sensors (e.g, RGB-D, Lidar) are placed in front of the robot.
Note that, since we design the robot into separated modules
(i.e., wheel mechanism, cargo, and sensor), we can easily
customize the design based on the need of different tasks.
Table I summarizes the key specifications of our BeetleBot.

AI Ecosystem: Apart from the novel hardware design,
our BeetleBot is equipped with state-of-the-art AI methods.
Our goal is to close the vision-control loop in robotics and
enhance the autonomy of the system. The AI ecosystem of
BeetleBot is split into three main applications: Autonomous
navigation in normal and complex environments with deep
neural network; Visual recognition and localization (e.g.,
face recognition, pedestrian, traffic light detection, sensor
fusion); Human-robot interaction (e.g., emotion estimation
and reaction, automatic question and answering). Note that
the AI ecosystem of BeetleBot has state-of-the-art accuracy

but is very lightweight and achieves real-time performance.
Overall, we can deploy the whole software system on an
NVIDA Jetson Xavier embedded board. Due to the page
limitation, we refer the readers to Fig. 2 and the video on
our website for the full demonstration:

https://sites.google.com/site/beetlebotrobot/

Testing Environments: Since robotics is a multidisci-
plinary field that requires heavy engineering, software testing
before deployment plays a critical role in our framework.
In particular, we perform extensive experiments to evaluate
the effectiveness of the robot in both simulation and real
environments. We employ Gazebo [3] simulation and build
large-scale environments to test the robot. In particular, we
create 539 3D object models to build three kind of simulation
environments: house (indoor), city (outdoor), and natural
cave (rough terrain). These objects are used to build 30
environments in total (i.e., 10 instances for each environ-
ment). In average, the simulated house environments are
built with approximately 130 objects in an area of 400m2.
The city has 275 objects and spread in 3, 000m2 while the
natural cave environments are built with 60 objects in ap-
proximately 4, 000m2 area. These simulation environments
can be used to collect data for different learning-based
methods (e.g., autonomous navigation, object detection) as
well as deploying the trained model. Note that all of the
simulation environment, robot model, and sensors are fully
compatible with ROS and Gazebo, hence ease the prototype
and deployment process. To encourage further research, these
large-scale environments and our collected datasets will be
released upon acceptance.

To conclude, we present BeetleBot, a new multi-purpose
AI-driven mobile robot. We hope that our experience and
open-source resources could benefit the robotic community
in the future.
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Abstract—Shape descriptor and shape reconstruction are two
challenges found in computer vision and graphics as well as in
perception for robotics, especially for some fields such as agri-
robotics (robotics for agriculture). Being able to offer a reliable
description of shape that can also translate directly into an high
fidelity model of the shape, would be of high importance for a
lot of applications such as phenotyping or agronomy. In this
paper we report on our work on using spherical harmonics
to offer efficient representation of strawberry shapes and we
validate them by reconstructing the fruits. The reconstruction
achieve extremely close results to the original shape (less than
1% deviation) and the representation reduce the complexity and
improve compactness by a large factor (minimum 100).

Index Terms—3D, spherical harmonics, point clouds, pheno-
typing

I. INTRODUCTION AND RELATED WORK

An accurate description of crops shape is an important chal-
lenge in horticulture. Automating their creation and allowing
a complete 3D reconstruction of the objects from it, would
improve greatly phenotyping or other agronomy tasks. In this
work, we use the mathematical concept of spherical harmonics
to create a representation of strawberries’ shape and study their
fidelity and accuracy by reconstructing the fruits with them.
Furthermore, this new representation offers a more compact
and efficient representation of the shape than using directly
points.

The use of spherical harmonics as a 3D shape represen-
tation was first proposed in [1]. The practical use of that
representation as a rotation-invariant feature descriptor was
later introduced in [2]. Some of the drawbacks related to
poor results with discontinuous surfaces were addressed by the
introduction of weighted spherical harmonics [3]. Applications
of Spherical Harmonics as shape descriptors include [4] who
applied them to summarise shapes of sand particles obtained
from X-ray micro-tomography. In [5] the authors propose
to use Spherical Harmonics to represent the 3D shape of
agricultural materials such as grains and show this represen-
tation to be a more compact and efficient representation than
previous methods and meshes/point clouds. Our work takes
inspiration from [5], reducing the process complexity to match
the symmetrical characteristics of strawberries.

II. METHODOLOGY

To explain our approach we detail in this section how spheri-
cal harmonics transformations are computed and implemented.

Spherical harmonics represent a solution to Laplace’s equa-
tion,defining a complete set of angular functions in spherical
coordinates. We can use it to define the surface f of an object
as described in Equation (1). In this equation the surface
is formulated as the combination of all spherical harmonics
Y ml (θ, φ) with their respective coefficients cml . In [4] they are
computed over three components : cml = (cmxl, c

m
yl, c

m
zl)

T , and
each point of the shape are associated to its spherical coordi-
nates with smoothing methods over each of these components.

f(θ, φ) =
∞∑
l=0

m=l∑
m=−l

cml Y
m
l (θ, φ) (1)

We detail in Equation. 2 the spherical harmonics for degree l
and order m, with P being the Legendre functions associated
with it. Spherical harmonics are computed on θ (azimuthal
coordinates) between [0, 2 ∗ π] and φ (polar coordinates)
between [0, π].

Y ml (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
eimθPml (cos(φ)) (2)

To go from the spherical mapping of an object to its
spherical harmonics representation we need the forward trans-
formation defined in Equation (3). The implementation of
these integrals varies from paper to paper [6], [7]. We use the
representation of these harmonics as detailed in Equation (4).
All the harmonics for a given position on the sphere can
be represented as a Matrix Ŷ for all degree and orders up
to m and l. Using the definition of the inverse spherical
harmonics in Equation (1), we can define the dot product of the
coefficient by the harmonics matrix. Finally, these coefficients
can be expressed as the dot product of our mapping on the
sphere by the inverse of the harmonics matrix. Also efficient
in terms of memory and simplicity, the forward spherical
harmonics transform is not computationally efficient but can
be accelerated through lookup tables and down-sampling of
our point clouds.

cml =

∫ π

0

∫ 2pi

0

dφdθf(θ, φ)Y ml (θ, φ) (3)
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Fig. 1. Example of strawberry point clouds (left example for each pair) and their reconstructions(right example for each pair), for two particular shapes.

Ŷ = Y ml (θ, φ)

f(θ, φ) = ĈŶ

Ĉ = Ŷ −1f(θ, φ)

(4)

As spherical harmonics are intrinsically symmetric over φ,
one can, similarly to [5] we take separated portions of the
shape and generate their spherical harmonics representation
independently for more precise control over the shape and
its details. We align the strawberries over their principal
axis along the horizontal axis and recreate the two halves
separately. To recreate each strawberry we change their points
to spherical coordinates and using the forward harmonics
transform, compute the coefficients up to an arbitrary degree.
We then use them to recreate the strawberry shape from the
unit sphere. Our sample set is composed of 15 3D point clouds
of strawberries from [8], representing all the different shapes
as described in the industry phenotyping reports.

III. RESULTS

In this section, we present some of our results and analyse
them toward their possible applications.

In Table I we show the quantitative results obtained us-
ing spherical harmonics for the reconstruction of our set of
strawberries. We compare the average volume and the average
surface area, with their deviation. With such a high degree of
harmonics, the deviation is very small for most of our samples
and his coming from fined details rather than important shape
features.

In Figure 1 we present some qualitative results of two dif-
ferent strawberries point clouds reconstructed using spherical
harmonics. We use 30 degrees of harmonics, for a very precise
and detailed reconstruction (seed bumps and calyx shape with
a lot of details). At this level, only a few details are smoothed
out and only very sharp angles and edges are not recreated.

In Figure 2 we present an example of the coefficients
for one of the strawberries. We showcase the coefficients
responsible for most of the shape of the strawberry omitting
the one influencing more fine details. As per our way of
processing both halves of the strawberry independently, we
have them separated by the centre of the chart. We also omit

TABLE I
THE VOLUME AND SURFACE AREA ESTIMATION RESULTS FROM THE

RECONSTRUCTION PROCESS OF 15 3D MODELS OF STRAWBERRIES (NOTE
THE OBJECTS WERE SCALED DURING CAPTURE PROCESS).

Original Reconstructed Deviation
Volume (µ± σ) cm3 45± 46 45± 46 ∼ 1%

Surface area (µ± σ) cm2 280± 160 277± 160 ∼ 1%

Fig. 2. Spherical harmonics coefficients responsible for main shape informa-
tion

the first coefficient, associated with the first harmonic as it is
responsible for the round shape of the strawberry, present in
every strawberry and non-discriminative other than for scale.
The first twenty harmonics are more important for the shape
and specificity of the global strawberry, while the following
one corresponding to more fine details. This representation
offers a compact (maximum a thousand parameters for high
precision reconstruction) way to represent the strawberry shape
with relatively close fidelity, compared to the hundreds of
thousands points composing the object.

IV. CONCLUSION AND DISCUSSION

We have presented an efficient way of describing and re-
constructing strawberry shape information. It offers a compact
way of representing the shape of such objects and simpli-
fies future work done on processing this shape information.
Future work would include reconstruction from partial view,
automatic phenotyping from the compact representation, gen-
eration of new fruit models etc.
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Abstract—Keeping personnel motivated and overall 
company morale high is a crucial aspect of employee 
satisfaction. In manufacturing, various tasks can be found that 
can put a strain on personnel, one of them being the so-called 
ramp-up process. Ramp-up requires human intervention to 
bring a system to full production, but the process of achieving a 
successful ramp-up can be very cumbersome and lengthy. As 
this is usually a trial-and-error approach, spirits can get very 
low over time if the situation appears to only be slowly 
improving. For this purpose, gamification is introduced into the 
ramp-up process for Industry 4.0 to improve the ramp-up 
experience for operators. This paper offers an overview of the 
idea, current and future work of a web application for ramp-up 
that includes the major principles of gamification.  The 
presented work is part of an ongoing student project work 
undertaken with the Intelligent Automation Centre at 
Loughborough University. 

Keywords— Gamification, Ramp-up, Industry 4.0, Game 
Design, Web App. 

I. INTRODUCTION

Over the last few years, the focus of the manufacturing 
industry has been on a new paradigm, often referred to as 
Industry 4.0 [1]. In essence, the focus of Industry 4.0 is 
achieving end-to-end digitisation allowing for data creation, 
sharing and analysis to achieve a more sustainable production 
[2]. One area in the production life cycle that is known to be 
very time-consuming, is the so-called ramp-up phase [3], [4]. 
During that phase a production system is taken from low- to 
high-volume production, which requires tweaking of system 
and process settings until the required functionality, product 
quality and performance are reached [5]. This can be a tedious 
undertaking as no two systems are the same and no manual for 
ramping up a system exists [6].  

In this context, this ongoing work proposes to use the 
concept of gamification to assist in the ramp-up process. The 
idea of increasing the performance during ramp-up using a 
gamification approach is not new [7]. However, work and 
knowledge in this area are still very limited and to the best of 
the authors’ knowledge, no web application for ramp-up exists 
to date. For this research work, gamification is understood as 
“a tool to increase productivity and morale within a company 
by using elements of game playing, which can also be used for 
encouragement”. The underlying tenet is that through 
increasing motivation through the gamification introduction a 
smoother ramp-up process can be ensured as reinforcing 
training can be given to the operator. For this purpose, this 
work will develop a web application to assist the user during 
the ramp-up process that contains elements from gamification. 

A. Project Aims and Objectives

As part of this, research into the design and the
development of a useful gamification web app for the ramp-
up process, the following aims and objectives will be 
addressed: 

 Identify key aspects of the project for Literature
Review including defining Gamification, Ramp-up
Process and Industry 4.0.

 As part of the literature review find relevant case
studies.

 Determine how Gamification for Ramp-up Process
can be linked and how Industry 4.0 links with
Gamification and Ramp-up as part of the literature
review.

 Design one proposal for experimentation, use case
study information found to develop proposal.

 Validate the chosen proposal within the laboratory
and collect data from an experiment.

 Gather feedback on ideas through a questionnaire to
ensure that game designed matches gaming habits in
current society.

II. GAMIFICATION APP DESIGN

To start the project, extensive research was conducted to 
ensure that all topics were understood. From this, a Product 
Design Specification (PDS) was created that assists in the 
design process. The initial design process included designing 
the social side of the game including the user profile page, the 
forum page and game mascots. The initial game designs 
included a quiz-based game, a timer game and ‘Build a 
Toolbox’ game. However, the latter seems to have the most 
potential to be developed. These aspects are briefly described 
in more detail below.  

A. Profile Page

Every user will be able to set up a profile page. Some of
the information included will be achievements, skills the user 
has and any information the user would like to include. Other 
information they could add may include their job title, 
education, a fun fact, and their company details. The user will 
also be required to create an avatar that would act as their 
virtual representation. The user will be able to choose the sex, 
skin colour, hair colour, hairstyle, eye colour, clothing etc.  

B. Forum Page

The forum page is a way for users to interact with one
another. Some of the aspects of the forum page include a news 
feed for the company’s latest news, a way to see other people’s 
posts and a way to react and comment on them. 

C. Game Mascots

The idea of a mascot is being considered to capture the
user interest in the game. The mascot will fit into the game by 
giving the user the instructions of how to use the game along 
with any training the company deem appropriate. The initial 
ideas shown in Fig. 1 are “Robbie the Robot”, “Ruby Ramp 
Up” and “Engineer Dave”. However, any mascot idea would 
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need to be developed alongside the game for it to fit within the 
game environment.   

Fig. 1. Initial design ideas for the game mascot. 

D. Build A Toolbox Game

The user will gain points through completing the ramp-up
process to compete in this game. For example, 5 points for 
finishing the process and 1 point for every test run. As the user 
gains more points, they can buy tools to go in their virtual 
toolbox. Once a toolbox is full, they move to the next size 
toolbox. Special tools could also be awarded to show that 
certain training has been completed, which could be a way for 
senior managers to see what training operators have had. To 
keep the user interested in the game, small games could be 
introduced, for example completing a puzzle, for when the 
ramp-up process is running. This could also be a way for the 
user to build more points up to buy tools.  

III. INITIAL QUESTIONNAIRE

Alongside the design process, an online questionnaire was 
designed and distributed to help determine peoples’ gaming 
habits and their initial thoughts on the game ideas. A total of 
125 responses from 125 participants was gathered. 
Information about survey participants can be summarised as 
follows: Participants mainly have a non-technical or 
manufacturing background (63.2%). The majority of 
participants was female (66.4%). Participants majorly fell 
within the age range of 46-55y (34.4%), followed by 36-45y 
(20%) and 18-25y (19.2%). A higher percentage of 
participants currently plays games (64%). Most of the games 
are played on the mobile phone (70.4%), as board games 
(50.4%) or on game consoles (46.4%) (multiple choices 
apply). The types of games that are mostly played are puzzles 
(54.4%) and board games (51.2%) and action (39.2%) 
(multiple choices apply). Besides general questions about the 
participant’s gaming habits (“Do you currently play any 
games, or used to play games?”, “Do/Did you interact with 
other people when playing games?”, “What type of games 
do/did you mostly play? “, etc.), questions related to 
gamification were also asked. This allowed identifying 
whether people have previously heard of the term and what 
their understanding of it is. When asked about gamification, 
only 8.8% have ever heard of the term prior to participation. 
Where definitions were given, these described the key ideas 
of gamification very well, i.e. trying to improve a process, 
incorporating elements commonly used in gaming (trophies, 
leader boards, statistics), making a process psychologically 
rewarding, being motivative.  

IV. CASE STUDY

An industrial-like scenario will be used to test the game, 
once developed. The designed use case focuses on ramping up 
a robot cell for a dispensing process, that will require 
participants to change different process and hardware settings 
[8]. These settings will have to be captured by the participants 
through a developed graphical user interface (GUI). The robot 
cell consists of the following main components: a single ABB 
IRB120 6-axis industrial robot connected to an IRC5 
controller, a two-finger gripper to hold metal plates during 
robot manipulation, and an automated time-pressure 
dispensing unit (Fisnar JB1113N). A simplified overview of 
the setup can be seen in Fig. 2. The participants will be asked 
to produce three different products that differ in their produced 
pattern. For that purpose, participants will have to set different 
process and equipment settings before testing the setup to 
reach certain key performance indicators that deem the ramp-
up successful, such as product quality and cycle time. Changes 
that can be made to the system include different sizes of 
syringe nozzle, varying robot speed and dispensing pressure.  
Participants will be divided into two groups, where one will 
interact with the developed web app within the ramp-up GUI, 
and the other will not. In that way, the usefulness and user-
friendliness of the developed app can be evaluated. Besides 
comparing KPIs related to the effect of gamification to 
achieve a successful ramp-up, such as time required to get the 
setup to volume production, a post-questionnaire will capture 
more subjective information like engagement and fun with the 
app, but also the level of distraction. 

Fig. 2. Overview of the setup for the robotised dispensing experiment.  

V. FUTURE WORK

The main focus will now be on the implementation of the 
actual gamification web app. Currently, different 
programming languages are assessed to identify the best 
suitable one. During the implementation, frequent feedback 
from an academic but also industrial perspective will be 
sought to ensure the usefulness of the game. Once the app has 
been finalised, testing on the previously described use case 
will be undertaken. Moreover, to assess the user-friendliness 
of the game, another questionnaire will be distributed to 
participants of the experiment.  
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Abstract— Reliable communication is a critical factor for
ensuring robust performance of multi-robot teams. A selection
of results are presented here comparing the impact of poor
network quality on team performance under several conditions.
Two different processes for emulating degraded network signal
strength are compared in a physical environment: modelled sig-
nal degradation (MSD), approximated according to increasing
distance from a connected network node (i.e. robot), versus
effective signal degradation (ESD). The results of both signal
strength processes exhibit similar trends, demonstrating that
ESD in a physical environment can be modelled relatively well
using MSD.

I. INTRODUCTION
Reliable communication is one of the key requirements

for successful operation of a multi-robot team—without it,
team coordination is difficult. Many works focus on network
optimisation and communication-aware motion planning for
multi-robot systems [1]–[6]. The aforementioned works use
either optimisation-based control or consensus algorithms
for centralised or distributed multi-robot communication and
resilience against either uncooperative robots or maximis-
ing communication performance. The majority of research
conducted with physical multi-robot teams takes place in
controlled indoor laboratory settings supported by robust
network infrastructure. However, many recognise the grow-
ing need for reliable wireless communication in multi-robot
systems in a wide range of environments and applications.

In earlier work [7], we introduced a behaviour-based,
network-aware control algorithm which aims to prevent loss
of communication by keeping robots within range of net-
worked nodes (i.e. neighbouring robots), even if the network
is severely crippled, e.g. due to reduced signal strength or
high percentage of dropped network packets. In order to
test this behaviour, we previously modelled two of the most
common network problems [7]–[9]: simulated packet-loss
(SPL), which drops a pre-defined percentage of messages
(0%,25%,50%,75%), and a method of estimating network
signal strength, which periodically examines the distance be-
tween robots and based on a pre-determined threshold warns
the robots if they are likely to disconnect. The contribution
presented here briefly summarises an extension of our ex-
perimental framework, adding modelled signal degradation
(MSD1) and effective signal degradation (ESD) to allow more

1In previous works MSD was denoted SSD (simulated signal degrada-
tion)

comprehensive testing of behaviours that respond to network
failure.

II. APPROACH

In our previous work [8], we performed preliminary anal-
ysis of how multi-robot team performance was impacted by
simulated packet-loss (SPL). We then extended this work
by introducing our novel Leader-Follower (LF) behaviour
designed to respond to network weaknesses, described in [7]
and evaluated using our Multi-Robot Communication testbed
(MRComm) [9]. Our contributions can be separated into
two parts: (1) modelling various aspects of network quality
(MRComm); and (2) controlling robot behaviour in response
to changes in the network quality (LF).

The network type is the communication medium that is
used to transfer messages between robots. In the experiments
demonstrated here we analyse Ad Hoc (AH) network type,
which is an uncommon network to use in robotics as it
has no infrastructure. A robot is used to initialise an AH
network and the rest of the team connect directly to the
that robot. Communication is peer-to-peer, and increasing the
proximity of neighbouring robots (i.e. causing signal degra-
dation) negatively impacts communication quality. Moreover,
certain assumptions are made about the network type to
make our problem more tractable. Firstly, it is assumed that
signal-to-noise ratio (SNR) experiences uniform loss and
that interference from other devices is negligible. Secondly,
the final assumption (limitation) for AH is that after 9.0
meters robots can no longer communicate, no matter the
experiment configuration. From the tests conducted in our
physical environment, a separation greater than 9.0 meters
between robots would consistently return a signal strength
lower than -60 dBm, which is considered a poor signal.

Here we define two network thresholds that are related
to signal strength in order to model different types of
communication failure: MSD and ESD.

MSD is modelled in the same environment that the multi-
robot team experiments are conducted in (i.e. indoor office
building). Furthermore, it is modelled using two separately
trained Support Vector Regression (SVR) models with Radial
Basis Function kernels (RBF), for both direct and obstructed
line-of-sight signal strength. The data for the models was
obtained by dividing and performing two levels of granularity
tests (i.e. at a rate of 0.1 m and 1 m steps) on signal strength

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

128

https://doi.org/10.31256/Ld2Re8B



Fig. 1. Signal strength of ESD and MSD samples, measured over time

with increasing distance2. The fine granularity test was to
get more accurate data and the coarse granularity test was
to allow for acceptable estimation of signal strength with
increasing distance.

ESD is a new process implemented in MRComm that
queries all network devices connected to the AH network at
a frequency of 2 Hz, obtaining the signal strength from each
device. Executing this process in parallel with our package
provided three main benefits. Firstly, if a robot experiences
hardware malfunction and loses some/all sensor functional-
ity, assuming the network device is still functional, it would
continue pulsing a signal. Secondly, if a robot experiences
a software crash caused by an internal or external issue of
MRComm, it would continue pulsing a signal. Finally, this
functionality of MRComm would allow almost any type of
device to run this process and send out a signal, therefore
increasing its utility.

Figure 1 shows the mean MSD and ESD signal strength
over a range of time t, measured in seconds from when
experiments start at t0 = 0 up until t = 150 s (i.e. the first
150 seconds of each experiment). To improve comparability
between MSD and ESD the results were obtained from
experiments using the same configuration. It was expected
that MSD and ESD would yield near identical signal strength
results. However, as observed in Figure 1 the distributions
are different, but the trends are similar and the standard
deviations overlap in many cases. The difference between
MSD and ESD is to be expected, since MSD’s accuracy is
limited to the SVR models used. The SVR models are based
on a small sample size of the physical environment and to
improve the predicted signal strength either the sample size
needs to be expanded to include a data point at every possible
location of the physical environment or a more accurate
model needs to be introduced. However, the most simple
approach can be to apply an offset to the current SVR models
to artificially boost the predicted signal strength and thereby
improve MSD.

MRComm provides a response to the network parameters
in the form of one of two robot behaviours, which are

2Each data point reading was repeated 30 times to get an average result.

(a) MSD (b) ESD
Fig. 2. Comparison of the average number of failed tasks for MSD vs
ESD, using AH and {SPL0, SPL25, SPL50, SPL75}, for both LF (on
the left of each sub-plot) and NB (on the right of each sub-plot) behaviours.
The LF behaviour recovers from all perturbations so there are no failed
tasks. NB reveals the effects of MSD versus ESD.

the baseline Non-responsive Behaviour (NB) and the novel
Leader-Follower (LF). The NB behaviour does not react to
any network parameters and simply enables robots to attempt
to complete tasks assigned to them, even if the network
drops out. In contrast, LF responds to different network
perturbations and thresholds. It uses a high-level grouping
technique to alert and force robots to move together in the
event that signal strength is too weak (degraded).

III. EXPERIMENTAL RESULTS

A series of experiments were run using the MRComm
framework [7]–[9] and an AH network, which is initially
established and then maintained by the robot team using the
Robot Operating System (ROS) framework and the multi-
master package (FKIE [10]). The experiments were run in
in an office building and each experiment was performed
5 times. Experiments were run with 3 Turtlebot2 robots
performing 7 independent (i.e., not constrained by any other
task), single-robot observation tasks, starting in a clustered
formation. A network perturbation and threshold are applied
to each experiment: an SPL (with packet loss varying from
0% to 75%), followed by either MSD or ESD).

Figure 2 shows a sample of experiment configurations and
the number of tasks that failed to be communicated per robot
in the team. The results for this performance metric showed
that no robot using NB successfully communicated all their
task status messages. However, Figure 2 shows that robots
using the LF behaviour managed to always communicate all
their task status messages.

IV. SUMMARY

The results presented in this paper show that communi-
cation of shared messages was successfully carried out on
a physical multi-robot team using the novel LF behaviour.
Furthermore, we observe that the MSD parameter has a
similar signal strength trend to the ESD parameter. Our
objective of having a behaviour capable of reacting and
mitigating common network issues has been achieved. In
future work we will focus on optimising and expanding the
capability of the behaviour to deal with more challenging
tasks and environments.

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

129



REFERENCES

[1] J. Le Ny, A. Ribeiro, and G. J. Pappas, “Adaptive communication-
constrained deployment of unmanned vehicle systems,” IEEE Journal
on Selected Areas in Communications, vol. 30, no. 5, pp. 923–934,
June 2012.
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Abstract—Automation presents a potential solution to agricul-
tural challenges such as worker shortages, invasive pest species
and decreasing profit margins. Many technical challenges remain
including visual detection of soft fruits. State-of-the-art fruit
detectors increasingly rely on deep learning models and standard
imaging devices which achieve excellent performance but require
significant effort to train and deploy, limiting their uptake.
The fruit-fly species Drosophila suzukii successfully pinpoints a
host of soft fruits visually presenting an excellent model system
which can inspire a new class of fruit detector using sparse
computational and training resource. Here we present an outline
of the features of fruit fly vision that appear to underlie their
fruit finding abilities and present a specification for a novel robot
imaging system to verify hypotheses in real agricultural settings.

Index Terms—Agriculture, Fruit Detection, Computer Vision,
Bioinspired, Fruit Fly, Multi-Spectral Imaging, Novel Sensing

I. INTRODUCTION

For essential agricultural tasks such as yield prediction,
assessment of fruit health and ripeness and for harvesting to be
automated, visual fruit detection systems must be: sufficiently
robust to function in industrial settings with known challenges
of lighting variance and occlusions; computationally efficient
to be deployed on small, cheap robot platforms; perform in
real-time, and ideally function for a variety of fruits (and their
varieties).

A. Engineered approach

Deep neural networks (DNN) represent the state-of-the-art
methodology in fruit detection, with models such as MangoY-
OLO [1], DeepFruits [2], and most recently L*a*b*Fruits [3]
all achieving excellent detection scores when tested on realistic
datasets while striving to reduce computational cost (see [1],
[3] for discussion). Performance improvements can be traced
to innovations in both imaging technologies (RGB [1], [3],
3D depth [4] and RGB + infrared [2] cameras) and network
architectures moving from multi stage detectors with course
feature maps [5] to single-stage detectors [6] and multi-scale
feature maps [7], [8]. Most relevant to this work, L*a*b*Fruits
[3], demonstrated the utility of looking to nature for inspiration
by using a colour opponent process inspired by human visual
perception to increase performance.

This work is funded by the PhD Scholarship: AHDB Horticulture Project
CP 170 Bioinspired vision systems for automated harvesting.

Yet a concern for DNN models is the need for (re)training
for each fruit type or variety not found in the original training
dataset. This process often requires manual collection and
annotation of images, and expert involvement in retraining
models, presenting a potential barrier for fruit growers (see
Fig. 1 Upper Panel for a typical DNN training pipeline).

B. Nature’s approach
Our research has identified the fruit fly Drosophila suzukii

(DS) as an ideal model for inspiring a new class of low
computation, zero-retraining fruit detector. DS are an invasive
pest species to Europe that can visually locate a variety of soft
fruit types of a variety of colours (e.g. strawberries, raspber-
ries, blueberries) despite possessing low-resolution eyes and a
highly constrained nervous system [9].

Although DS uses a combination of olfactory and vision
cues to find fruit, trapping studies demonstrate that bright
colours alone actively attracting fruit flies [10]. Underpinning
their colour detection abilities are eyes that detect light in
spectra outside the range detected by imaging systems used
by deep learning algorithms to date. Specifically, DS have
two photo-receptors sensitive to ultraviolet (UV) light (at
335nm and 355nm), as well as green (530nm) and blue
(460nm) light. UV light has already been demonstrated as a
powerful cue for segmenting foreground objects from the solar
background [11]. Moreover, a recent study has suggested that a
similar colour opponent mechanism in this non-visible spectra
provides fruit flies with their impressive fruit finding abilities
[12]. The short life-span of DS would favour a hard-wired
visual processing pipeline allowing fruits of various kind to
be identified without a costly learning phase with associated
benefits for artificial systems (see Fig. 1 Lower Panel for the
proposed bioinspired pipeline).

II. DROSOPHILA EYE CAMERA SPECIFICATIONS

To verify whether non-visible light offers benefits for
generic fruit detection we propose to construct a novel imaging
system inspired by DS (See Table I for technical specification
and comparison with state-of-the-art), and to collect data in
real horticultural settings allowing bench-marking against state
of the art models.

III. OUTLOOK

DS offer an excellent inspiration to developing highly re-
liant, but computationally cheap fruit detection systems. The
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Fig. 1. Deep learning life cycle: Training and retraining - Steps of deep learning, 1) Gather images, 2) Annotate images, 3) Train neural network (Network
architecture from [1], 4) High accuracy fruit detector. For additional fruits to be detected not found in the original dataset, repeat steps one, two and three.
Bioinspired learning life cycle - 1) Evolutionary optimised input sensitives to UV (335nm and 355nm), green (530nm) and blue (460nm). 2) The network is
trained through evolution to find fruits using a small brain requiring no training. 3) General fruit detector able to detect all fruits.

TABLE I
COMPARISON BETWEEN NATURE AND ENGINEERED APPROACHES.

Points of Detectors
comparison DS [1] [3] [2]

Input pixel count 700 4.1MP 0.9MP 2MP
Input type UVGB RGB RGB RGB + IR

FPS 100 [13] 14 26 5
Retraining for new fruit No Yes Yes Yes

custom camera detailed above and currently under develop-
ment will play a crucial role in understanding how the humble
fruit fly achieves such impressive feats which we will directly
apply to solve real agricultural problems. Field data collection
scheduled for Spring/Summer 2020.
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Abstract—This paper describes research into the development
of a co-creative human-robot drawing system. Based on a pilot
user study to survey the drawing practices of artists, various
interaction factors have been identified that define example roles
that a robot might take as a co-creative drawing partner. A
research prototype system which observes an artist drawing with
physical media—on paper—through the use of a drawing tablet
and multiple cameras. The robotic system observes and captures
data in real-time, as the artist draws. The longterm goal is to
generate a data-backed model of the artist’s drawing process,
which in future will respond through projected visual interactions
upon the drawn surface. The design and technical details of the
observational system are described in this short paper.

Index Terms—human-robot collaboration, co-creative drawing,
user study, artist drawing process

I. INTRODUCTION

Inspired by advances in creative AI and human-robot collab-
orative drawing [1], we envision a system in which physical
media and non-invasive observation of an artist contributes
to a co-creative mixed digital-physical workflow. Currently,
drawing has a large digital tools economy, and the primary
workflow for artists to create 2-D content is a digital workflow.
Our longterm aim is to develop an intelligent, autonomous
system that has the ability to combine active and passive
sensing with sophisticated data analysis and active response,
designed to help artists move forward in their creative process.
Our research involves examination from two perspectives:
(1) what is technically feasible through the development and
evaluation of a research prototype of a real-time co-creative
drawing system; and (2) what artists want with respect to a
co-creative drawing partner. Here, we describe the technical
design of our prototype system, the functionality of which
was guided by input gathered during a pilot study conducted
with drawing practitioners [2].

II. BACKGROUND

Traditionally, human-robotic collaboration in the visual arts
consisted of artists programming robots to draw imperatively
such as AARON [3], or portraiture style through observation
from an artist robot, such as PAUL [4]. Collaborative human-
robotic drawing is structured around how a robot collaborates
with a human. In the DOUG system [1], the robot mimics
what the human is drawing and the human responds to what

Research is supported through an EPSRC DTP Studentship ”Collaborative
Drawing Systems”, Grant Reference EP/N509498/1

the robot is drawing in a simultaneous form of collabora-
tive sketching [5]. Research into socially assistive robotics
for art therapy has the robot responding to what a human
is painting through contributing painting which is a visual
metaphor according to a sensed emotional model [6]. In
a similar approach, but outside of robotics in the creative
computing area, research into co-creative sketching systems
involves using visual metaphors to avoid design fixation by
presenting imagery that would provide a conceptual shift in
what the artist is drawing [7]. The sketch-based interaction
research provides models of real-time drawing support, such as
idealised geometric models [8], processed gradients of drawn
images [9], graph-based representations of drawn stroke [10]
and neural network representations [11].

To inform development of our human-robot creativity sys-
tem, we conducted a mixed-methods study of drawing prac-
titioners (e.g. professional illustrators, fine artists and art stu-
dents) in Autumn 2018 [2]. Our aim was to discover possible
roles that technology could play in observing, modelling and
possibly assisting an artist with their drawing. A total of 21
participants representing a mix of professional illustrators,
part-time drawing enthusiasts and illustration students were
interviewed individually. Each participant completed a paper
survey about their drawing habits, technology usage and
attitude, recorded three drawing exercises and participated
in an interview discussing their drawing habits and thoughts
about AI/robotics. Three key themes were identified: drawing
with physical mediums is a traditional and preliminary way
of creation for visual artists; co-creative AI is preferable to
didactic AI; and artists share a general discomfort with the idea
of automating creative work. Discussion of these themes has
been explored elsewhere [2], as has discussion of factors for
defining a co-creative drawing robot and the role(s) that robot
might take in a co-creative human-robot drawing process [12].

III. RESEARCH PROTOTYPE

Figure 1 shows an early version of our prototype system
(left) and the corresponding schematic design of its compo-
nents (right). Each component is controlled by a dedicated
Raspberry PI with communication coordinated via ROS1.
The sensing components are (as labelled in Figure 1): three
Raspberry PI cameras (1a/CTOP, 1b/CLEFT and 1c/CRIGHT),
a depth camera (2/DFRONT) and a WACOM Bamboo Slate2

1http://ros.org
2https://www.wacom.com/en-cl/products/smartpads/bamboo-slate
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Inputs
T: Tablet (Vector / Points)
C: Cameras (Raster / RGB)
D: Depth Camera (Raster / RGBD)

Outputs P: Overlaid Projection (Raster)

T

CLEFT CRIGHT

DFRONT

CTOP

POVERHEAD

3

1b
1c1a

2

Fig. 1. Design of prototype system: (left) the hardware setup, (right) schematic
of the design

digital “sketchpad” (3/T), which uses a pressure sensitive pen
that tracks movement and produces marks on physical paper.
The cameras observe the drawing area at multiple angles and
records the textural aspects of the drawing, while the digital
sketchpad records a vector representation of the pen’s move-
ments. Our design includes a projector (POVERHEAD) which
overlays the robot’s interaction upon the drawing surface;
this component will be implemented in our next generation
prototype. Through the use of projection, the artist has the
sole physical agency to manipulate the drawing in progress.

Recently, we completed a data-gathering drawing study
(n = 13) involving full-time drawing practitioners (profes-
sionals and students) to test our prototype system and collect
an initial set for modelling. Participants did two drawing ex-
ercises, each lasting about 10 minutes: draw from observation
of a still-life, and draw freely from imagination.

Fig. 2. Example inventory of datasets gathered for a drawing exercise.

Fig. 3. Drawing in progress.

Fig. 4. Example drawing with time of drawing visualised through color.

(a) original (raw) data

(b) resampled data at 5sec time periods

Fig. 5. Pressure of drawing pen as recorded by the WACOM digital
“sketchpad” for the same drawing exercise.

Here we present some very preliminary analysis of the
data gathered. Figures 2-5 illustrate the data gathered and
preliminary modelling for one sample participant. Figure 2
illustrates the amount of data gathered from one drawing
exercise completed by our sample participant. Figure 3 shows
their drawing in progress. Figure 4 shows the resulting drawing
and how it evolved over time. Figure 5a illustrates the level
of pressure exerted, over time, by one participant for the same
drawing. This data is rather dense, so we have resampled the
data in an attempt to build a model of user pressure behaviour
(Figure 5b).

IV. SUMMARY

We have described the design of our robotic co-creative
drawing system, informed by an initial user study (Autumn
2018) and recently tested (January 2020) to gather drawing
data from full-time artists. With this dataset, we are building
models of the drawing process that will incorporate dynamics
of the artist’s body, their tool use and textural changes to the
artwork’s surface. With these models, we plan to experiment
by having our robotic system inhabit various roles as a co-
creative partner (e.g. suggestive, predictive, referential) and
evaluate these roles through a larger user study with drawing
practitioners in order to measure impacts of the robot on the
artist’s drawing process.
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Abstract—Robotic packaging generally involves picking target
objects from a pile consisting of many other similar or random
objects. For a pile composed of herbs, the weight picked up can
be controlled by varying the opening aperture width of a parallel
gripper. However, the individual strands of herbs get entangled
with each other, causing more to be picked up than desired. Here,
it is shown that using a spread-and-pick approach the degree of
entanglement in a herb pile can be reduced. Compared to the
traditional approach of picking from an entanglement-free point
in the pile, the proposed approach reduces the variance in picked
weight for homogeneous piles of plastic and real herbs by 36.35
and 23.64 percent, respectively. These results demonstrate that
using the proposed spread-and-pick approach, the stochasticity of
a herb environment can be counterbalanced effectively.

Index Terms—Robotics in Agriculture and Forestry, Agricul-
tural Automation, Computer Vision for Automation

I. INTRODUCTION

Industries manufacturing machinery, transportation equip-
ment and various everyday retail products on a large scale
have benefited immensely from intelligent and collaborative
assembly-line robots. However, to date, the application of such
technologies to the processing of fresh horticultural produce
remains mostly dependent on manual labour. The suppliers of
fresh herbs, for instance, grow stock under glass or in fields
and then must transport them to packaging stations and pack
them as per the weight requirements of retailers. The manual
packaging process involved is not only costly in terms of
labour but also suffers from human errors and low production
efficiency.

A more scalable approach could be automation through
adaptive robotic systems, however, deploying such a system
presents several challenges. Fresh horticultural produce can be
highly variable in terms of its handling properties, even within
a single plant variety, making it difficult to design robotic
controllers for their manipulation. Herbs, in particular, tend
to present as a highly stochastic, tangled mass (see Fig. 1(a)),
making it difficult for a robotic system to extract a uniform
quantity suitable for presentation to the consumer. Smaller,
fixed-mass portions must be extracted and fed via conveyor
belt for packaging but the tangling (see Fig. 1(b)) makes the
mass lifted in a simple pick operation difficult to predict.

Traditionally, researchers have studied bin-picking1 in the
context of two main challenges: (i) gripper-object collision

This work is supported in part by Vitacress Salads UK Ltd.
1Pile and bin are used interchangeably in this paper.

(a) (b)

Fig. 1. (a) Handling fresh herbs and (b) entanglement.

and (ii) object entanglement. The use of simple geometric
primitives such as planes, spheres, cylinders and cones for
object recognition in the bin was proposed in [1]. Changes
in surface types and depth discontinuities were then used to
segment the cluttered scene. A novel vision-based algorithm
was proposed in [2], which suggested resolving gripper-object
collision by identifying and picking the topmost object in a
pile. A deep learning approach for picking individual objects
from a cluttered bin was proposed in [3]. These methods prove
effective for avoiding gripper-object collision. However, they
do not address the issue of object entanglement directly.

In the past, the entanglement between the objects in a
pile has been directly addressed through interaction with the
pile [4], [5]. Known CAD models of the objects were used
in [6] for planning singulation of individual objects from a
heterogeneous pile. Although these methods address the issue
of entanglement directly, their objective is to extract a single,
rigid object, rather than a uniform quantity of deformable,
granular media, such as herbs.

To this end, this paper proposes a spread-and-pick method,
which reduces entanglement, and in turn, makes the pick
operation more predictable in terms of the picking quantity.
It has several advantages, including that (i) it does not require
any large scale data collection and (ii) it does not depend on
any geometrical information about the objects picked.

II. METHOD

A. Collision-free Gripper Pose: Graspability Index

The graspability index (GI) [7] is a vision-based measure
for evaluating the candidate grasping poses, which has proved
useful in industrial pick and place settings. It uses a single
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Depth Camera

Bagging Area

Weighing Setup

Parallel Gripper

Fig. 2. Overview of the experimental setup. Red, Green and
Blue arrows represent x, y and z axes respectively.

depth map of the scene to estimate the optimal gripper position
and orientation for picking an individual object. Along with the
parallel gripper, GI is also applicable to general grippers such
as multi-finger and vacuum grippers. For an insertion depth
(rz), GI estimates a point r = (rx, ry, rθ)

> in the bin such
that the parallel plates of the gripper can be inserted without
causing any collision between them and the objects inside.
rθ denotes the orientation of the gripper around its z-axis. A
range of rθ is evaluated using GI, and for the optimal r∗θ , the
optimal collision-free picking point (r∗x, r∗y) is estimated.

B. Tangle Reduction

A key problem with the use of GI is that it does not
take account of tangling causing undesired objects to picked
alongside the target one. For better control and accuracy, this
paper proposes a means to adjust the picking action to reduce
tangling and thereby achieve more consistent picking. For
this, a spread-and-pick approach is proposed, whereby the
pick operation is augmented with an extra detangling step
using an extension to the GI. Humans frequently use their
fingers to separate things while picking, especially when they
have to work with one hand. The proposed spread-and-pick
approach draws inspiration from this behaviour. Specifically,
if the target object is between the two fingers of a parallel
gripper, instead of moving inwards (closing) and picking the
object, the fingers are moved outward to displace other objects
entangled or close to the boundary of the target object. The
proposed approach extends the GI by identifying regions of
high entanglement in the scene and then defining a spreading
movement to disentangle them: First, for a fixed insertion
depth rz and gripper orientation rθ, the optimal collision-
free picking point (r∗x, r∗y) is estimated using GI. Next, the
peak entanglement point r′ = (r′x, r

′
y)
> is estimated using the

collision map as obtained from the vision module. Finally, rθ
is updated as

θ = arccos(
r∗ >r′

|r∗||r′|
). (1)

TABLE I
Picked weight (mean±s.d.) over 20 trials for plastic herbs.

Gripper Width(mm) Method Picked Weight(g)

20 Graspability Index 9.844±11.078
Spread and Pick 8.247±7.635

30 Graspability Index 10.482±9.172
Spread and Pick 7.501±5.839

40 Graspability Index 13.267±11.953
Spread and Pick 14.333±8.480

TABLE II
Picked weight (mean±s.d.) over 10 trials for real herbs.

Gripper Width(mm) Method Picked Weight(g)

20 Graspability Index 3.712±3.028
Spread and Pick 15.646±2.471

30 Graspability Index 8.622±3.480
Spread and Pick 15.788±2.658

40 Graspability Index 19.192±7.273
Spread and Pick 18.361±6.934

C. Procedure

Using the set up as shown in Fig. 2, a series of robotic
picking operations are conducted for plastic and real herbs
following a simple picking methodology as well as following
the proposed spread-and-pick methodology. Each picking op-
eration consists of the robot reaching into a pile of tangled
media (herbs) of fixed mass, closing its gripper, and lifting
what is grasped free of the surface of the bagging area. For
simplicity and lower cycle-time, only 3-degrees of freedom
of the robot are used for picking movements, and the highest
point in the pile is chosen as the target picking location. To
ensure a similar physical arrangement of the tangled media
between trials, any media picked is returned to the bagging
area and the entire quantity is transferred to a container of fixed
dimension (18 cm x 13.5 cm) before being placed back on to
the bagging area for the next pick. In the case of real herbs,
for each method and each opening aperture width w of the
gripper, a fresh batch of herbs is used to avoid variations due
to changes in their physical state (e.g., due to herbs drying out,
or becoming damaged over successive picks). For spread-and-
pick, the grasping manoeuvre consists of setting the gripper
orientation rθ according to (1) and the gripper aperture w
to the chosen width prior to lowering it into the pile. Once
lowered into the pile, instead of closing, the gripper plates
are moved outwards and opened, leading to dispersion of the
herbs. The mass of media picked is recorded for each trial.

III. RESULTS

The results for picking real herbs are shown in TABLE II.
As can be seen, there is a clear reduction in the variance
of the picked mass for the spread-and-pick. The maximum
percentage decrease in the variance for plastic and real herbs
is 36.35% and 23.64%, respectively, for the intermediate
w = 30mm. This suggests that the proposed approach is
effective for improving the predictability of picking in this
challenging automation task.
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Abstract—Flying insects display a repertoire of complex be-
haviours that are facilitated by their non-standard visual system
that if understood would offer solutions for weight- and power-
constrained robotic platforms such as micro unmanned aerial
vehicles (MUAVs). Crucial to this goal is revealing the specific
features of insect eyes that engineered solutions would benefit
from possessing, however progress in exploration of the design
space has been limited by challenges in accurately replicating
insect vision. Here we propose that emerging ray-tracing tech-
nologies are ideally placed to realise the high-fidelity replication
of the insect visual perspective in a rapid, modular and adaptive
framework allowing development of technical specifications for a
new class of bio-inspired sensor. A proof-of-principle insect eye
renderer is shown and insights into research directions it affords
discussed.

Index Terms—Novel sensing, Artificial Intelligence and
Robotics, Bioinspired, Vision, Rendering

I. INTRODUCTION

For engineers seeking to develop long-range autonomous
micro unmanned aerial vehicles (MUAVs) weight and power
constraints present a critical design parameter that currently
limits their application [1]. Insects provide an existence proof
that seemingly simple sensory systems are sufficient for solv-
ing complex tasks from navigating natural habitats in 3D;
through detection and tracking of food, prey and conspecfics;
to rapid flight control to avoid damaging impacts from static
and moving objects [2]. We thus propose that novel solutions
will arise through revealing the secrets of insect visual systems
allowing for abstraction into a new class of low-power, low-
weight bioinspired robot sensor.

Insects see the world through a fundamentally different
mechanism than humans and most camera systems [2]. Their
compound eyes are constructed from hundreds to thousands
of self-contained ”mini-cameras” known as ommnitidia: each
comprising a lens, light-guide and light sensitive cells which
are physically interlocked over a convex surface per eye (see
Figure 1(b)). In addition, the surface structure (e.g. field of
view), layout (e.g. density of ommatidia), and ommatidial
function (e.g. sensitivity to specific properties of light: wave-
length, polarisation) of compound eyes vary across eye regions
and between caste, sex and species. Given the vastness of the
feature space in which compound eye designs reside and the
computational complexity involved in searching that space for
possible solutions we define three criteria that any insect eye
simulator must meet:

(a) The projection pyramid of a
panoramic image, projecting the
3D environment onto a single
uniform point or sphere.

(b) The sampling rays following
the normal of an irregular pro-
jection surface, similar to that
found on an insect eye.

Fig. 1: Regular and irregular surface projection diagrams. In-
sect eye photo credit to Matthew Barber, used with Permision.

1) Perform beyond real-time.
2) Allow arrangement of ommatidia on arbitrary 3D sur-

faces.
3) Allow configuration of individual ommatidial properties.

II. STATE OF THE ART

Insect eye perspective renderers have tended to focus on
recreating the panoramic field of view and low spatial reso-
lution properties of compound eyes [3], [4]. Cube-mapping
techniques, whereby a camera is rotated to sample images
across six viewpoints which are then stitched into a single
panoramic image (Figure 1b(a)) combined with downsampling
and post-processing approximate these two properties in a
computationally efficient way (e.g. [5]). These systems have
been used to investigate the impact of these properties on
navigational performance in simulated [6] and real-world stud-
ies that generate similar perspectives by augmenting standard
cameras using convex mirrors [7], [8] or fish-eye lens imaging
systems [9]. Yet as such models form images through the
projection of a 3D scene onto a uniform viewing surface, they
inherently violate criteria 3. Attempts to address this issue by
modelling compound eyes using multiple small field of view
cameras within hardware-accelerated modern game engines
have proven unsuccessful due to performance constraints that
violate criteria 1.

III. INSECT VISION USING RAY-BASED METHODS

Raycasting and raytracing techniques are image render-
ing approaches that produce realistic imagery through the
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physically-based simulation of light rays, as opposed to the
less realistic projection transform approaches commonly used
in real-time graphics processes. By tracing the path of in-
dividual rays, ray-based rendering allows for the accurate
simulation of optical effects, driving their realism. Technical
development has been primarily driven by the film industry
(e.g. see advances in the Toy Story movie franchise, with
the most recent instalment including advanced camera lensing
effects).

Due to demand in the video games industry for increasingly
realistic graphics generated in real-time, dedicated hardware
has been introduced to massively parallelise computationally
expensive ray casting and tracing algorithms. These changes
in graphics processing ability lend themselves very well to
the simulation of compound eyes, as ray-based methods allow
for the accurate sampling of light as if refracted through
an ommatidium’s optical system: something that traditional
rendering pipelines struggle to achieve [10].

Moreover, as ray-based methods are inherently designed to
handle the simulation of many rays at many locations within an
environment, the source position of these rays are immaterial:
any projection surface can be used to spawn rays with minimal
additional overhead. That is, it should be feasible to render the
perspective from any number of ommatidia on any surface.

Finally, modern raytracing hardware is capable of rendering
tens of millions of rays per frame, owing to their real-time use
on high-definition displays. In comparison, a drone bee’s eye
consists of only about 10,000 ommatidia [11], the view of
each of which could be simulated with 81 rays [9] and the
total number of rays would still be less than that used in a
1920-by-1080 pixel (standard HD screen size) rendering.

An initial study conducted by Polster et al. [12] demon-
strates some of the benefits to be gained from ray-based
simulation of the compound eye, providing support to the
approach. Their work does not, however, run in real-time and
also lacks tools to explore differing insect eye surface shapes.

IV. PROOF OF CONCEPT

Figure 2 shows sample images using our prototype
raytracing-based insect eye renderer. Images were generated in
a large 3D environment from an insect’s visual perspective at
60 frames per second utilising raytracing hardware in modern
consumer-grade NVidia graphics cards (NVidia GeForce RTX
2080Ti) successfully fulfilling Criteria 1. Figure 2 (upper)
shows a simulated eye with equally spaced ommnitidia ar-
ranged on a sphere whereas Figure 2 (lower) has ommnitidia
clustered around the horizon as observed in some insects,
demonstrating the ability of the system to fulfil Criteria 3.

With the technical challenges of building a ray-tracing based
insect eye renderer largely complete (open-source software
release expected soon), we will now look to investigate the
specific requirements for natural and artificial visual systems
in shared tasks such as navigation. Insights gained from more
thoroughly exploring the insect visual perspective—and it’s
design relative to visual feature extraction—will help guide
the development of visual systems in robotics by considering

not only visual post-processing steps, but also the intrinsic
structure and design of the imaging sensor itself.

Fig. 2: Insect perspectives generated using a prototype
raytracing-based renderer. Upper: Ommatidial distribution in-
creased on horizon. Lower: Equidistant distribution.
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    Abstract— This paper describes the development and the 

implementation of an omnidirectional multiple stereo cameras 

vision system. The vision system is compact and light enough to 

operate on board a commercially available off the shelf 

miniature UAV (Unmanned Aerial Vehicle)-Quadrotor. The 

vision system contains several stereo cameras ruggedly fixed on-

board the UAV-Quadrotor, it is oriented in such a way that it 

has a 360 degrees omnidirectional visual coverage. The paper 

demonstrates that by combining several stereo cameras, it can 

provide and combine depth information and optical flow data in 

real time to an on-board image processing computer. One can 

estimate the position and the orientation such as roll, pitch and 

yaw of the UAV in 3D (three dimensions) space accurately 

without the aid of GPS (Global Positing System), IMU (Initial 

Measurement Unit) or any other external navigation or 

orientation aid. This method can be described as “Simultaneous 

Localization and Exploration Oriented Visual Navigation”. It is 

a development of a vision system capable of navigating 

autonomously an UAV-Quadrotor through random free spaces 

within an unknown complex environment and without any 

mapping, it simply performs by detecting and avoiding obstacles 

calculating the required “through flight path”.  

Keywords— UAV-Quadrotor, vision system, GPU, stereo 

camera, visual navigation, Homography planer surface. 

I. INTRODUCTION 

    Airborne mobile robots localisation is the determination of 

the robot position and orientation in 3D space. Much research 

has been conducted in order to estimate accurately the robot 

position and orientation utilising different types of perception 

methods [1]. GPS and Laser detection and ranging sensor 

(LIDAR) [2] are among the most popular available 

positioning and mapping sensors. 

Due to the latest advances in cameras sensors technology, 

cameras have become lighter and more power efficient, they 

operate at high image resolution and ultra-fast processing 

power. Hence, this results in increased research in the field of 

computer vision [1], specifically in visual perception. Many 

researchers utilise mono and stereo cameras systems for 

mobile robot localisation and navigation with acceptable 

result [3] [4]. The proposed vision system has 360 degrees of 

stereo vision coverage compared with [4][5][6]. It enables an 

aerial robot to navigate autonomously in a complex non pre-

mapped 3D environment. The onboard vision system utilises 

a robust and light weight low power perception system 

containing five stereo camera modules, further simply 

referred as stereo cameras.  Each stereo camera consists of 

one (RGB) Red, Green, Blue camera, one infrared (IR) 

camera and one IR laser illuminator depicted in Fig.1. 

Considering the optical flow measurements this approach is 

multispectral diverse from the other approaches utilising just 

one RGB stereo camera dedicated only for depth 

measurements [4] [5] [6]. To process the visual information 

obtained from the five stereo cameras, an on-board Nvidia 

Jetson TX2-256 core GPU (Graphic Processor Unit) Pascal 

processor board is used. The power requirement of the entire 

vision system when measured on average does not exceed 50 

watts which makes it very suitable for autonomous airborne 

applications.  

Fig. 1. Stereo camera module just 28 grams in weight. 

The airborne robot platform used in this research is a 

miniature custom build Unmanned Arial Vehicle (UAV) - 

Quadrotor shown in Fig. 2. The Quadrotor is inherently less 

unstable than a conventional helicopter. It is a multi-rotor 

under-actuated helicopter. It has four propellers, each 

diagonal facing propellers pair rotating in opposite direction 

cancelling out each other generated rotational torque, all four 

propellers powered by electric DC brushless motors (BLDC), 

which are powered from on-board DC voltage. 

The UAV-Quadrotor is capable of performing a vertical flight 

and transition to and from a horizontal flight. Its flight control 

method depends mainly on controlling the variation of the 

distribution of the propellers lifting force and propellers 

generated torques about its center of gravity. Controlling 

these forces enables the onboard control system to stabilize it 

during hovering and performing complex flight. The UAV-

Quadrotor is capable of lifting a payload weight of up to 1100 

gram. 

Fig. 2. The research custom build UAV Quadrotor 
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II. EXPERIMENTAL METHOD

      The research method investigates the development of a 

multiple stereo vision system utilising off-the-shelf hardware 

and software. The developed system contains five stereo 

cameras, image processing and navigation computer, off-the 

-shelf flight controller, wireless communication devices, DC

power source and the UAV-Quadrotor frame. The vision

system has 360 degrees of stereo vision coverage shown in

Fig. 3. It processes in sequence the images obtained from the

upward looking stereo camera, forward looking stereo

camera, downward stereo looking camera, left-backward

looking stereo camera, and right-backward stereo looking

camera. The entire vision system operates at up to speed 20

fps at image pixel resolution of (1280 x 720) and given pixel

areas of (921,600 pixels) per direction calculating position

and orientation of the UAV Quadrotor with the reference to

any detected environment features or landmarks. The vision

system will compare its position and orientation

measurements accuracy during flying, in real time with the

on-board high grade IMU and GPS measurements

specifically within an indoor low light environment. The

obtained experimental data will be sent in real time to a

ground station for processing and analysis. Furthermore, the

vision system will provide in real time the horizontal and

vertical flying control commands to the on-board flight

control system, also occasionally for safety reason in

conjunction with the UAV-Quadrotor’s remote control.

Fig. 3. The UAV-Quadrotor top view showing the stereo 

cameras orientation.  

III. THE VISION AND NAVIGATION ALGORITHM

   Considering any 3D environment whether it is known or 

unknown, empty or equipped, in its simplest description it 

contains a combination of flat surfaces, edges, corners, and 

bends or curves. These combinations of environment features 

present the environment in terms of walls, floor, ground, 

ceiling, edges, corners, and other possible shapes. 

Hence, the vision algorithm will process the images depth and 

optical flow obtaining five data sets from five stereo cameras. 

Each data set contains information about the detected 

environment features such as corners, edges and planer (plane 

surfaces) estimating their position (X, Y, Z) and the 

orientation such as roll, pitch and yaw (φ, θ, ψ). Visual 

detection performed mainly by matching (features detector 

and descriptor) and tracking these features between the 

sequences of image frames obtained from the five stereo 

cameras video stream at 20Hz. Homographic Filter is first 

level filtering to reduce illumination glare and shadows 

followed by Bilateral Filter to remove noise and sharpen 

edges in images. Second level filtering commenced with 

RANSAC (Random Sampling Consensus), it detects data 

outliers and excluded them from the measurements, this 

enables an accurate estimation of the homography matrix and 

the position of each stereo camera in 3D space. The 

estimation is based on the assumption that the UAV-

Quadrotor is reasonably stable, and it flies or hovers over or 

under a plan surface such as a floor or ceiling respectively. 

Finally, the third level filtering performs non-linear 

estimations utilising Extended Kalman Filter (EKF) to 

estimate each stereo camera’s coordinates (position and 

orientation) in 3D space. The estimation is calculated with 

reference to obstacles such as landmarks or an environment 

features detected during the flight or hovering. The 6-DOF 

(Degree of Freedom) and altitude of the UAV-Quadrotor are 

calculated by transforming the translation and rotation 

corrected components of each of the five stereo cameras local 

frame coordinates to the UAV-Quadrotor frame coordinates 

expressed in the North-East-Down (NED) system. 

Autonomous navigation will be performed by the ability of 

the vision system to detect, avoid and calculate the flight path 

required for the UAV-Quadrotor to fly thorough hindrance 

free space. 

IV. RESULT AND DISCUSSION

   As previously discussed, the utilisation of visual perception 

in localizing the UAV-Quadrotor in an unknown 

environment appears very promising. As shown the 

Omnidirection stereo vision system has multidirectional field 

of view. It is capable to acquire distance, velocity, and 

rotation components of the environment visually detected 

obstacles in real time.  Such a system is suitable for 

exploration navigation.  It is defined as a method of detecting, 

avoiding, and navigating available spaces within the 

environment. Currently the hardware and software 

integration is completed within the UAV-Quadrotor 

including flying testing with full payload. Considering urban 

and industrial areas, the image-processing algorithm will be 

tested for robustness and the ability of estimating the 

translation and rotation components and navigating the UAV-

Quadrotor during flying and hovering without the aid of the 

IMU, GPS and any external navigation aid. 

V. FUTURE WORK

   The multidirectional stereo vision system method for 

estimating position and orientation will enable the UAV-

Quadrotor to fly and avoid obstacles following the required 

flight path through any random available space within 

unknown environments without any requirement for 

mapping. It allows the exploration of the environment at a 

very fast pace. It is also possible to utilise such a vision 

system to perform complex flight formation of multiple 

UAV-Quadrotors. This is achievable by measuring visually 

the attitude and speed of each UAV in the visual vicinity and 

coordinate collectively the required flight manoeuvre to fly 

along a specific flight path to explore a large and complex 

environment. The proposed system may provide new 

opportunities of visual oriented navigation and exploration 
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such exploring un-mapped area, performing ad-hoc fast 

exploration mission of a very large urban site or navigating 

planetary landscape where there is uneven landscape with 

many valleys and hills. 
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Abstract - In this paper, the use of soft suction cups for 

automated mushroom picking is studied. The aim is to identify 

the vacuum level that starts to cause bruising for mushroom 

cups, in addition to the maximum torque that can be generated 

at this value to facilitate harvesting via twisting mushrooms. An 

experimental setup was developed that controls vacuum level, 

controls rotation of the vacuum gripper, and records resulting 

torque during picking.  

Keywords - agri-robotics, soft grippers, grasping. 

I. INTRODUCTION

The agriculture sector nowadays is interested in the 

use of robotics to automate labour-intensive harvesting tasks. 

Mushroom harvesting is an example which requires lots of 

human pickers that are becoming difficult to recruit. Picking 

involves skilful twisting of the mushrooms to separate them 

from the compost. Soft robotics offers various grasping 

technologies that are suited for delicate targets such as 

elastomer actuators, granular jamming, Gecko adhesion, 

Electro adhesion, and others. Suction based gripers can be a 

simple solution for mushroom picking, but vacuum can also 

bruise picked mushroom surface. This project studies the 

impact of vacuum on mushroom bruising and the maximum 

torque that can be generated for picking mushroom without 

bruising using a soft vacuum cup.  

II. LITERATURE REVIEW

Soft grippers provide excellent shape adaptation to a wide 

range of objects compared to conventional rigid grippers. 

Soft grippers can be categories into three main categories. 

First by using actuation, which can bend and grasp the objects 

gently similar to human fingers [1][2]. This approach can 

easily handle convex and non-convex shapes, but it is 

difficult for picking a flat and deformable object. Second 

gripper technique is by controlled stiffness [3]. There are four 

methods for controlling stiffness; The shape memory 

polymers [4], low-melting-point alloys [5], granular jamming 

[6], and electrorheological (ER) and magnetorheological 

(MR) fluids [8]. The controlled stiffness gripper is not ideal 

for lifting flat or deformable objects, but is usually combined 

with actuation to handle convex and non-convex objects. The 

third soft gripper category is controlled adhesion, which also 

needs to use the actuation method to grip the objects. There 

are several examples of this method such as: electro-adhesion 

[9], Gecko adhesion, or simply using suction cups. Adhesion 

heavily depends on the surface properties of an object, but 

can be suitable for handling convex, flat and deformable 

objects, but not ideal for non-convex objects [3][10]. A soft 

gripper can also combine two technologies to improve 

performance. The choice of soft gripper type relies on the 

properties of the object such as shape, weight, and delicacy, 

as well as, picking requirements such as speed, force, the 

power consumption, and biocompatibility.  

In this work, soft suction cups are investigated as a simple 

approach for picking mushroom since they enable picking 

mushroom cups from the top, which is important since 

mushrooms grow in dense clusters so there is no space for 

fingers to reach in between. This makes other actuation based 

technologies difficult to reach the right position to grasp and 

twist a mushroom. This paper investigates if the suction cup 

concept would enable adapting to varying mushroom cup 

sizes without damaging or bruising. In addition, quantifying 

the maximum torque that the soft vacuum gripper can 

generate to harvest by twisting.  

III. EXPERIMENTAL SETUP

The pneumatic circuit and the block diagram in figure 1 

demonstrate the working principle of the setup controlling the 

grasping operation of bellows suction cups (SMC ZP2-

B15JS). The circuit is supplied with 4 bar pressure input 

which is adjusted via a pressure regulator based on a 

potentiometer reading connected to an Arduino board. The 

regulated pressure flows through an ejector which generates 

a negative pressure for the suction cup that is proportional to 

the set positive pressure. The vacuum cup activation and 

release are controlled by the valve via an Arduino signal from 

a push button. The Arduino program sets the duration of 

suction and the analogue signal to the regulator. The pressure 

gauge provides a visual display of the negative pressure 

during the operation. 

(a)
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Figure 1: (a) Pneumatic Circuit (b) Block diagram of the system 

Figure 2 shows the testing setup with the suction cup 

connected to the pneumatic circuit. The cup is carried by a 

stepper motor to enable rotation, which is mounted on a 

controlled motorized stage that moves the gripper vertically 

to approach and lift the mushroom. The setup allows 

mimicking a picking routine that involves lowering the cup 

until pressing against the mushroom, then activating the 

rotation motor to twist the suction cup. Sample mushrooms 

are fixed to a 3D printed piece mounted on a sensitive force-

torque sensor (Schunk Mini40) to record the maximum 

reaction torque that occurs during grasping. 

Figure2: The test setup of the vacuum cup gripper 

IV. RESULTS

Figure 3 shows the relationship between the resulting 

negative pressure at the vacuum cup and the supplied voltage 

to the pressure regulator for small and large mushrooms sizes. 

The relationship was mostly linear and was not significantly 

affected by the difference in mushroom size. Hence, the 

relationship can be used to estimate the voltage value 

required to achieve a particular negative pressure value. 

Figure 3: the relationship between the input voltage and the 

resulting negative pressure at the cup 

Moreover, the next stage of the experiment tested thirty 

mushrooms of different sizes at increasing vacuum levels to 

find out at what negative pressure the surface bruising starts 

to occur. The tested mushrooms were monitored over a 24-

hour period since bruising may occur later. The results 

showed that mushrooms suffered no damage up until -0.02 

bar at the end of the monitored duration. Figure 4 shows two 

mushrooms as an example to highlight when bruising occurs. 

A red circle was drawn around the area where the suction cup 

touched the mushroom to highlight bruising due to the cup. 

Figure 4: (a) no damage at a negative pressure of -0.02bar (b) 

visible damage at negative pressure -0.08  

Finally, a test was performed at the identified vacuum level 

of -0.02 bar on three mushrooms to evaluate the maximum 

torque that can be generated during twisting at this value. The 

results showed that the maximum resulting torque when no 

bruising to the cup occurs was on average 0.0038 Nm. 

Table1: Torque test values 

Pressure in 

(bar) 

Negative 

pressure (bar) 
Voltage (V) 

Average 

Torque (Nm) 

1.19 -0.02 0.65 0.0038 

V. CONCLUSIONS AND FUTURE WORK

The outcomes of the preliminary work presented here showed 

that the negative pressure that can lift loose mushrooms using 

soft suction cups without bruising was -0.02 bar. At this 

value, the torque generated during twisting fixed mushrooms 

was on average 0.0038 Nm, which will not always be enough 

to break the mushroom stalk for automated harvesting tasks. 

Further investigation into parameters other than size, such as 

maturity, that could impact the results is still needed. Future 

work will investigate methods to improve the design of the 

suction cups to increase the maximum torque without 

damaging the mushroom for better performance. This could 

involve combining multiple smaller suction cups or creating 

custom contact surfaces to better distribute the pressure. 

Nevertheless, the initial work so far identified an initial 

benchmark for future development. 
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Abstract—Hardware failure can have significant impact on
the performance of a multi-robot team. The work presented
here provides a preliminary assessment of this impact based
on experiments conducted with physical robots. Two types of
hardware failure are considered: motor failure and laser sensor
failure. These can be permanent (where the robot does not recover
during the mission) or temporary (where the robot does recover).
Results show that permanent motor failure and laser sensor faults
decrease the success rate of task completion to varying extents
and laser sensor faults also cause significant errors in measuring
distances travelled by the robot experiencing these faults. While
these results are not unexpected, the contribution of this work is
in laying out a structured baseline that will be used in the near
future for comparison of various recovery strategies.

Index Terms—multi-robot teams; fault tolerance

I. INTRODUCTION

A multi-robot team is expected to coordinate behaviours
amongst team members in order to complete a set of tasks
in such a way that the team outperforms what a single-robot
system can achieve. Distribution of tasks amongst multi-robot
team members is a well-studied problem. Much work has
focused on producing algorithms to optimise task allocation,
within restricted settings—without evaluating the effectiveness
of the allocation when tasks are actually executed and without
considering the impact if individual robots experience hard-
ware failure during a mission. Our prior work has pushed
beyond the allocation stage and concentrated on a system-
atic and empirical study of the impact of market-based task
allocation mechanisms when applied to a diverse landscape of
missions and environments [1]–[5]. The emphasis in that work
on experimental results, particularly results obtained from
physical robot teams, has led to questions of fault tolerance in
a multi-robot team and motivated our present line of research.

The study presented here investigates the impact on team
performance when one of the robots on the team experiences
hardware failure, such as loss of ability to move (“motor
failure”) or loss of sensing (“sensor failure”). We emulate
failure in a controlled way, so that we can measure the
impact of (planned) hardware faults on team performance
metrics. Results of experiments conducted with physical robots
reveal the changes in outcome when faults are “permanent”
(robot does not recover during a mission) as compared to
“temporary” (robot recovers during the mission).

II. BACKGROUND

Fault tolerance refers to the ability of a system to continue
to operate, albeit perhaps at a lower performance level, when

the system suffers from undesired situations (e.g. internal
faults and/or interference from the outside environment) [6]. A
brief survey of experiments conducted with multi-robot teams
examining the effects of faulty team members reveals that a
reliable and fault-tolerant multi-robot system comes at a cost.
There are three main questions which need to be addressed [7]:
(1) how to detect whether robots have faults or not; (2) how
to identify or diagnose robot failures; and (3) how to recover
from the failures.

Winfield & Nembrini [8] explore fault tolerance in a robot
swarm by using their Failure Mode and Effect Analysis (FMEA)
approach [9]. They test a containment task and analyse the
effects hazards have on a robot swarm. They show that partial
failure is more harmful than complete failure, e.g. a robot with
broken motors will have an anchoring effect, whereas complete
failure, which causes the robot to become a static obstacle, has
less serious effects on the whole system.

Bjerknes & Winfield [10] study a swarm taxis task in which
a team of robots form a coherent group and then move toward
a beacon. They consider three failure modes: complete failure
of individual robots; failure of a robot’s infrared (IR) sensors;
and failure of a robot’s motors only. Results show that IR
sensor failure slows down the progress of the swarm, but the
whole swarm still reaches the beacon; whereas motor failures
cause the swarm to hover around the failed robots, eventually
escaping the influence of the failure robots.

Timmis et al. [11] propose a self-healing approach. Using
the case study of [10], they consider motor failure due to lack
of power, where the remaining power is enough to support
communication. Faulty robots emit a faulty signal to their
neighbours and then healthy robots share their energy by
recharging the drained batteries of faulty robots. As evaluated
in simulation, the self-healing system works well even when
half the robots in the swarm experience low-energy faults.

Kamel et al. [12] present fault-tolerant cooperative control
strategies to deal with actuator faults in a multi-robot for-
mation task, and later work [13] considers partial actuator
faults. When complete failure occurs, the formation outcome
changes; whereas partial failure results in slower performance
but eventual achievement of the desired formation.

Our long term research goal focuses on generating robust
strategies for recovering from partial and total motor and
sensor failures. Here we present empirical baseline results
obtained from a number of experiments conducted on physical
robots where faults were emulated.
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(a) arena (b) robot
Fig. 1. Experimental setup

III. APPROACH

In order to investigate the impact of hardware failure in
a multi-robot team, we induce different types of failures in
the ”faulty” robot at a randomly generated time point. We
define two sets of parameters to classify each failure mode:
Permanent Failure (which cannot be recovered by the robot
itself and will persist for the remainder of the experiment)
versus Temporary Failure (which only exists for a short period
of time and the robot will recover autonomously without any
help); and Complete Failure (where the device is entirely
broken) versus Partial Failure (where the device works but
with performance degradation). This work investigates two
types of hardware failure (motor and laser sensor) in three
failure modes: complete (permanent) motor failure (CMF);
temporary motor failure (TMF); or permanent laser sensor
failure (PLF). No failure (NF) is included for comparison.

To evaluate the impact of each failure type, we consider
metrics that measure the performance of both individual robots
and the team as a whole. Here we focus on the distance
travelled by the robots executing allocated tasks; and success
rate of task completion by each robot.

IV. EXPERIMENTS AND RESULTS

We conducted 320 trails using the MRTeAm framework [4],
[14] and Turtlebot 3 Burger platform performing exploration
tasks in an office-like environment (Figure 1). Our ”faulty”
robot employs a modified controller which will induce failure
after a randomly generated time, chosen from a Gaussian dis-
tribution, and last for a random amount of time1. Experimental
missions have 8 tasks allocated to 3 robots using the Sequential
Single Item (SSI) auction mechanism [15]. Missions are clas-
sified according to scenario and starting condition. Scenarios
are defined by several parameters: single-robot (SR) versus
multi-robot (MR) tasks; independent (IT) versus constrained
(CT) tasks; and static (SA) versus dynamic (DA) task arrival
(before or during mission execution, respectively).

A sample set of results is shown in Figures 2 and 3. Figure 2
illustrates trajectories travelled by sample robots impacted by
complete motor failure (CMF) (Fig. 2a) and partial laser sensor
failure (PLF) (Fig. 2a) in one mission configuration (scenario
1, distributed start, MR-CT-SA configuration). Figure 3 illus-
trates performance metrics for the same mission. Figure 3a

1The parameters used: time of inducing failure: µ = 20, σ = 5, and
duration of temporary failure: µ = 10, σ = 2. Future work will compare
other distributions, such as Poisson.

(a) CMF (b) PLF
Fig. 2. Trajectories travelled by sample robots impacted by (a) complete motor
failure (CMF) and (b) partial laser failure (PLF) in one mission configuration
(scenario 1, distributed start, MR-CT-SA configuration): each mission involves
3 robots performing 8 exploration tasks (x1..x8).

(a) total distance travelled

(b) distance per robot (c) success rate per robot
Fig. 3. Statistics from one mission configuration (MR-CT-SA, distributed
start, scenario 1)

shows the total distance travelled by the team as a whole,
indicating clearly that when there is a partial laser sensor
failure, the faulty robot has trouble localising and travels much
further than it needs to, contributing to an outsize distance
for that experimental condition. This is highlighted by the
red path shown in Figure 2b and by the tallest (dark) bar in
Figure 3b. Figure 3c shows the success rate, which is measured
as the percentage of assigned tasks that were completed.
When failure is temporary and there are no failures, then all
assigned tasks are completed. Complete motor failure has a
more detrimental effect than partial laser failure.

V. SUMMARY

We have shown preliminary results of baseline experiments
designed to illustrate the impact of various types of hardware
failures on the performance metrics achieved by a multi-robot
team. A range of scenarios and mission configurations have
been produced, though space constraints here allow showing
only a sample for one such configuration. A more comprehen-
sive report with complete results is under preparation. Our next
steps involve development of response strategies when failures
occur, followed by experimental evaluation of our strategies in
comparison with others mentioned in Section II.
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Image Pre-processing vs. Transfer Learning for Visual Route Navigation

William H. B. Smith 1, Yvan Petillot 2 and Robert B. Fisher 3

Abstract— This paper investigates image pre-processing and
triplet learning for place recognition in route navigation. The
first contribution combines image pre-processing and ImageNet
pre-trained neural networks for generating improved image de-
scriptors. The second contribution is a fast, compact ‘FullDrop’
layer that can be appended to an ImageNet pre-trained network
and taught to generate invariant image descriptors with triplet
learning. The proposals decrease inference time by 8x and
parameters by 30x while keeping comparable performance to
NetVLAD, the state of the art for this task

I. INTRODUCTION
Neural network features provide state of the art recognition

accuracy [1], but are affected by weather, lighting and man-
made changes for visual place recognition [2]. This paper
compares two techniques to create descriptors that are robust
to these visual changes. Firstly, images are pre-processed
before their descriptors are extracted by a pre-trained neural
network. Secondly a ‘FullDrop’ layer is appended to the pre-
trained network and trained with a custom triplet learning
scheme to model a chosen route in a variety of conditions
3x faster with 30x fewer parameters than the state of the
art for this task: NetVLAD [3]. Not all route appearances
can be included in training data for deep learning solutions
to this problem. The fast re-training possible with this
paper’s approach instead seeks to generalise across just one
specified route in multiple conditions. The performance of
the embedded descriptors generated by both approaches is
compared with those generated by the pre-trained NetVLAD.
The Oxford RobotCar Dataset [4] is used for evaluation. This
paper’s two contributions are:

1) Image pre-processing and neural network combinations
for improved feature descriptors.

2) Triplet learning scheme and ‘FullDrop’ layer to gener-
ate image descriptors 8x faster with 30x fewer param-
eters than NetVLAD and comparable performance.

II. BACKGROUND
Initially, CNN’s pre-trained on the ImageNet object recog-

nition dataset were used to generate image descriptors for
place recognition [5]. Novel architectures [6] were then
trained end-to-end from scratch for place recognition. Triplet
learning achieved positive results [7], but struggled to com-
pete with off the shelf CNN descriptors.

This work was supported by the EPSRC Centre for Doctoral Training in
Robotics and Autonomous Systems.

1William Smith, The University of Edinburgh and Heriot-Watt University,
Edinburgh, EH14 4AS, UK whbsmith@gmail.com
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3 Robert B. Fisher, School of Informatics, University of Edinburgh, EH8
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Fig. 1. Pre-processing methods (PREP 1-5) on day and night images, left to
right: adaptive histogram normalisation; histogram normalisation; histogram
normalisation and subtraction of the image’s mean/std. deviation; subtraction
of the image’s mean/std. deviation; pixel-wise RGB normalisation.

NetVLAD [3] is the current state of the art in place image
retrieval. VGG16 is frozen for training down to, but not
including, the Conv5 layer then trained using triplet learning
with a final VLAD layer. Performance is evaluated in a
city environment at minimum intervals of 12 metres and
in other environments at discrete locations. New pre-trained
ImageNet networks, such as MobileNet have been released
but can’t be used in NetVLAD without lengthy re-training.

III. METHOD

A. Image Pre-processing

Images from a single route in two different conditions
were pre-processed using the five techniques (PREP 1-5) in
Figure 1 and embedded image descriptors were extracted
using VGG16 pre-trained on ImageNet data.

B. Triplet Network

Front-facing, pre-recorded and geotagged example traver-
sal videos of a single route are selected for training data.
A custom ‘FullDrop’ layer is appended to VGG16 and
MobileNet pre-trained on ImageNet data with the final
classification layer removed. The FullDrop layer is trained
to model the route with triplet learning [8]. The choice of
triplets for learning has a significant effect on performance.
The FullDrop layer triplet mining differs from NetVLAD by
using positive images from less than or equal to 10 adjacent
frames from the anchor and negative images more than 10
adjacent frames away.

Six video traversals of the same route: Early Evening,
Morning, Midday, Rain, Afternoon and Overcast were sam-
pled and synchronised for training. Each traversal was 884
frames at intervals of approximate 2.25m, making a total of
5304 training images. Approximately 51,000 triplets were
mined for 10 training epochs in batches of 16 with a margin
of 1. NetVLAD’s training differed from the FullDrop training
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by unfreezing the Conv5 layer of the base network at training
time and only used the hardest available triplets. Triplet
learning relies on the raw difference between images so the
FullDrop layer was not combined with image pre-processing.

Fig. 2. Architecture of the system, including the ‘FullDrop’ layer. W is
the width of the layer, which in this case was 512. The dropout parameter
was 0.4 and L2 normalization was 0.1. This layer can be appended to any
ImageNet pre-trained network and used for this task.

IV. RESULTS

The NetVLAD model ‘VGG-16 + NetVLAD + whitening’
published online by [3] was used as a comparison. NetVLAD
was pre-trained on the urban Pittsburgh 30k dataset and
shown to be effective on a variety of different urban and
suburban locations.

Night and day traversals of a 2km route synchronised and
sampled to 878 images from the Oxford RobotCar Dataset
taken months apart were used for the evaluation in Table IV-
.1. Frames from each route were pre-processed and passed
through the pre-trained VGG16 or just through the FullDrop
or NetVLAD model to produce embedded image descriptors
which were compared using the Euclidean distance; the 20
closest matches were generated and the one closest to the
ground truth was identified as the localisation prediction in
an effort to balance the potential accuracy of a probability-
based system with pure place recognition.

1) Image Pre-processing: Four of the techniques reduced
place recognition error. Specifically PREP 5 reduces mean
error by 40.9% and median error by 63.1%.

TABLE I
THE LOCALISATION ERROR (METRES) OF NIGHT AND DAY ROUTE

TRAVERSALS, WITH INFERENCE TIME AND TRAINING PARAMETER

COUNT, AS DESCRIBED IN SECTIONS III-A AND IV

µ (m) Median (m) σ (m) Inf.T. (ms) Params.
MobileNet + FullDrop 13.3 3.32 25.8 7 8x105

NetVLAD 15.5 2.39 29.1 80 2.4x107

VGG16 + FullDrop 49.4 9.57 73.8 10 5x105
PREP 5 + VGG16 50.9 29.0 54.5 11 -
PREP 1 + VGG16 70.1 54.4 66.4 10 -
PREP 2 + VGG16 72.6 65.7 63.6 10 -
PREP 4 + VGG16 73.0 56.4 65.2 11 -
VGG16 83.6 78.5 62.1 10 -
PREP 3 + VGG16 96.8 58.8 94.9 10 -

2) FullDrop vs. NetVLAD: The taught VGG16 + Full-
Drop model reduces the median error from PREP 5 by a
further 67.0%. MobileNet + FullDrop reduces mean error
by 14.2% compared to NetVLAD. The FullDrop model is
capable of generalisation to unseen conditions and produces
median localisation predictions that are within 7.2m of
NetVLAD’s, which was extensively pre-trained for this task.

Figure 3 illustrates the comparison between the two evalu-
ation routes’ descriptors. The brief, but route specific training
for the FullDrop descriptors allow them to represent the
similarities between similar sections of route more accurately
in comparison to NetVLAD which shows a weaker relation-
ship between adjacent frames. The results suggest FullDrop
descriptors are better for utilising the relationship between
consecutive frame descriptors for navigation. FullDrop’s
more accurate model of the route may introduce confusion
between nearby, similar frames.

The MobileNet + FullDrop and NetVLAD models con-
sisted of approximately 8x105 and 2.4x107 parameters re-
spectively. An Intel i7 CPU and Nvidia GTX 1070 trained
the FullDrop layer in 510 seconds once the features had been
extracted using the base network. Training a VLAD layer
took 3x longer, re-training the full NetVLAD would take far
longer.

3) Inference Time: NetVLAD (VGG16 + VLAD layer),
VGG16 + FullDrop and MobileNet + FullDrop take 80ms,
10ms and 7ms to generate embedded descriptors on an
Nvidia GTX 1070.

Fig. 3. Partial difference matrices of night and day route traversals from
Table IV-.1. Showing the relative embedded descriptor relationships. The
darker the blue the lower the match error.

V. CONCLUSION
Deep learning for discrete place recognition provides in-

spiration for real-time continuous route navigation. Reduced
complexity decreases inference and training time while main-
taining generalisation across a single route and resilience
to the problem of perceptual aliasing. Image pre-processing
improves performance and maintains decreased inference
time with no need for re-training.
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Unsupervised Anomaly Detection for Safe Robot
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Abstract—Faults in robot operations are risky, particularly
when robots are operating in the same environment as humans.
Early detection of such faults is necessary to prevent further
escalation and endangering human life. However, due to sensor
noise and unforeseen faults in robots, creating a model for fault
prediction is difficult. Existing supervised data-driven approaches
rely on large amounts of labelled data for detecting anomalies,
which is impractical in real applications. In this paper, we
present an unsupervised machine learning approach for this
purpose, which requires only data corresponding to the normal
operation of the robot. We demonstrate how to fuse multi-modal
information from robot motion sensors and evaluate the proposed
framework in multiple scenarios collected from a real mobile
robot.

Index Terms—anomaly detection, one-class SVM, safety

I. INTRODUCTION

Recently robots have started replacing humans in areas
where the jobs are mostly dull, repetitive or dangerous for
humans. There are many examples in areas such as agriculture,
tourism, logistics and transport where the robots have either
fully replaced or they are accompanying humans. One of
the most important concerns of operating robots in human-
environment is safety. Usually, robots use sensor data to
detect the presence of any kind of object or the human but
the noise in the sensors or its malfunctioning can cause a
disaster. Detection of these kinds of faults at the earliest is very
important before causing serious damage. In the real world,
it is not feasible to foresee all kinds of possible faults and
therefore these can not be modelled easily. Hence, a data-
driven approach to detect these kinds of anomalies is required.
We propose to use an unsupervised technique which requires
only data corresponding to the normal operation of the robot
- namely one-class support vector machine (OCSVM). The
technique was used in [1] for collision detection and collision
point localisation in a humanoid which can help the remote
operator to stop the robot in case of an emergency. In [2]
the authors used an isolation forest-based anomaly detection
method to detect the anomalous behaviour in Unmanned
Aerial Vehicles (UAVs). The contribution of our paper is to
use OCSVM for anomaly detection in the operation of a
mobile robot based on motion data coming from the robot’s
motion sensors. Furthermore, we also evaluate the proposed
framework in multiple real-world scenarios and present the
results based on data collected from a real mobile robot.

Robot

cmd_vel

odometry

motor_controller

IMU

Message 
Synchronization

features
OCSVM

anomaly_
detected

Training

features

Testing

Fig. 1. An overview of the proposed data-driven anomaly detection system.

II. METHODOLOGY

A. Overview

The general system overview is presented in Fig. 1. The
sensor data coming from the robot include odometry, relative
motor power and speed for each wheel, linear acceleration
from the IMU and issued command velocity. The frequency
of received sensor messages varies and therefore in the first
instance, these are synchronised. We up-sample all sensor
message to 100 Hz. The synchronised messages form a feature
vector of 11 values for each time instance which is an input
to the one-class SVM classifier.

B. One-class SVM

OCSVM was first proposed by Schölkopf et al. [3] as
an extension to the SVM. The method does not require the
labelled data from two classes and can be trained using the
data from one class only. OCSVM uses a kernel function
k(xi,xj) to map the features x into a high-dimensional space
φ(·) where it finds a hyper-plane w ·φ(x)− ρ = 0 separating
most of the data from the origin. This is achieved by solving
the following quadratic program that maximises the distance
between the hyper-plane and the origin:

min
w∈F,ξ∈R`,ρ∈R

1

2
‖w‖2 + 1

v`

∑
i

ξi − ρ

subject to (w · φ (xi)) ≥ ρ− ξi, ξi ≥ 0

(1)

where ν ∈ (0, 1] is an upper bound on the fraction of outliers
and a lower bound on the number of training examples used
as support vectors, ξi are slack variables and ρ is bias. By
using Lagrange techniques, the decision function can be given
by, f(x) = sgn (

∑
i αik (xi,x)− ρ), where i = 1, . . . , `

and αi are Lagrange multipliers. An incoming datum xn is
determined as the anomalous if f(xn) < 0.
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III. EXPERIMENTS

A. Experimental Setup

To test the feasibility of the proposed system, we have
designed a set of experiments with a real outdoor mobile robot
Thorvald [4]. The robot is equipped with wheel encoders,
motor controller and IMU. The data collection was performed
by driving the robot manually using a joystick and issuing
forward or backward command velocities. For validation and
evaluation, we have also devised a set of anomalous situations
by pushing the robot and recording the ground-truth using a
joystick. For the normal operation, we ran the robot at fixed
velocities of 0.15, 0.30 and 0.50 m/s (see Table I, dataset 1-
3). Dataset 4 was created by merging sets 1-3 to represent
a mix of normal behaviours. In the same way, datasets 5-
10 represent examples with anomalous cases: sets 5-6, 7-8
and 9-10 correspond to speeds of 0.15, 0.30 and 0.50 m/s
respectively.

TABLE I
DATA COLLECTED

number Samples Target Class Anomalies
1 51091 51091 0 (0.00%)
2 19045 19045 0 (0.00%)
3 11037 11037 0 (0.00%)
4 81173 81173 0 (0.00%)
5 18156 17860 296 (1.63%)
6 11940 11681 259 (2.17%)
7 10092 9792 300 (2.97%)
8 7816 7632 184 (2.35%)
9 5508 5455 53 (0.96%)
10 5096 4978 118 (2.32%)

B. Data pre-processing

In the feature vector, some of the features have a higher
order of variance than others and they might not allow the
classifier to learn from other features as expected. To avoid
that, we used standard scaler which scales each feature of the
training data such that the mean of each feature is zero and
the variance is unit. Later, these mean and variance are used
to transform the test data.

C. Hyperparameter Selection

We used radial basis function (RBF) kernel for OCSVM
thus the number of hyperparameters becomes two: 1) RBF
kernel coefficient gamma (γ) and 2) nu (ν). The performance
of OCSVM highly depends on these hyperparameters. The
value of ν was set to 0.0001 based on experiments while γ
was calculated with the equation, γ = 1/(n∗ V̂ar(X)), where
n is the number of features, V̂ar is the variance and X is the
training data.

D. Evaluation Metrics

As the datasets are highly imbalanced, Cohen’s Kappa
coefficient (κ) and specificity (S) were used to evaluate
the performance of the classifier. Cohen’s Kappa gives the
chance agreement between the observational accuracy and the
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Fig. 2. Anomaly detection: true detection (left) and false detection (right)

TABLE II
OCSVM PERFORMANCE EVALUATION

Train

Test
Velocity 0.15 0.30 0.50

S κ S κ S κ
0.15 0.32 0.38 1.00 0.01 1.00 0.01
0.30 0.01 0.02 0.31 0.39 1.00 0.01
0.50 0.01 0.02 0.04 0.08 0.33 0.33

0.15+0.30+0.50 0.13 0.22 0.07 0.12 0.38 0.3

expected accuracy [5] while specificity measures a classifier’s
ability to identify the anomalous data.

E. Results

We combined the datasets with the same velocity from Table
I and reported the results for the entire dataset in Table II. In
the latter, we can see that OCSVM performed better when the
training and testing data have the same magnitude of velocity.
Further, when the velocity in the training was higher than the
testing dataset, OCSVM missed anomalies and when it was
lower, OCSVM classified most of the samples as anomalies. It
is because as the velocity increases the variance of the features
increase and as mentioned in III-C, γ was chosen based on the
variance of the training data. For example, when the velocity
in the training was lower than the testing dataset, specificity
(S) was 1.00 but the value of κ was 0.01, which suggests that
the performance of the classifier was poor. Finally, when the
model was trained with dataset 4, it was able to predict some
anomalies in the case of 0.15 and 0.50 m/s. Fig. 2 shows an
example case of the anomaly detection system with the output,
ground truth and some of the features.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed OCSVM based anomaly detec-
tion method which uses multi-modal data fusion to detect
the anomalous operation of a robot in human accompanied
environments. We evaluated our approach in multiple real-
world scenarios.

In future, we are planning to understand more about the
temporal aspect of the data which might help the classifier to
learn better and potentially improve the classification perfor-
mance. In addition to that, we are focusing on feature selection
approaches for one-class classification.
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Abstract—This research builds on the existing capabilities of
the EUREKA Robotics Lab at Cardiff Metropolitan University
and aims to disrupt and enhance humanoid robotic programs
by studying the public’s acceptance of the use of AI robots
in the hospitality industry in Wales. As the first Humanoid
Robotic Waitress pilot in Wales, the research develops a novel
robot serving program and allows intelligent robots to serve in a
café in Cardiff. In addition, the study first proposed an cutting-
edge interactive model for hospitality robots. Data were collected
through questionnaires, interview and observation to explore the
acceptance of service robots in Wales.

Index Terms—Service robot, Robot acceptance, Robot and
human interaction

I. BACKGROUND AND PURPOSE

Since its inception, robots have been widely used in indus-
trial manufacturing and automation control. With the continu-
ous development of technology, robots have gradually begun
to shift from large-scale automation in manufacturing to small-
scale of autonomous and social services. There are increasing
trend for humanoid robots toto assist humans to complete
simple service tasks in the hospitality industry in China and
Japan. However, as the hospitality industry itself is an industry
with services as its core product, the acceptance of robots by
stakeholders is particularly important. Although robots as an
emerging product have been used in the service industry to
a certain extent to attract customers, not all of the known
cases have shown promising results. The world’s first robot
hotel certified by the Guinness Book of Records, Henn-na
has been operating in Japan since 2015. Hotel receptionists,
messengers, cleaners and luggage carriers are almost robots,
however, Japan’s Henn-na Hotel has laid off half of its 243
robots after they created more problems than they could solve,
as first reported by The Wall Street Journal [1].Why is this
happening? Is there a deficiency in the “intelligentisation”
of the hospitality industry? Are there concerns about these
service robots? With the application of robotics blowouts in
the Fourth Industrialisation era, exploring public acceptance
of service robots is essential: are smart robots entering the
hospitality industry lead to job termination or the gospel to
waiters and waitress? The research builds on the existing
capabilities of the EUREKA Robotics Laboratory at Cardiff

All robotics equipment is sponsored by EUREKA Robotics Lab at Cardiff
Metropolitan University

Metropolitan University, with the aim of researching and
designing humanoid robot programmes to disrupt and enhance
the hospitality sector in Wales. By investigating the public
acceptance of AI robots working in the hospitality industry.

II. METHODOLOGY AND RESEARCH APPROACH

Researchers use investigative research method to pilot the
conceptual Human-Robot Interaction (HRI) model by experi-
menting a humanoid service roobot, namely Robot EUREKA
Gen-1, in a restaurant environment in Cardiff. Researchers
collect both qualitative and quantitative data by surveying
customers while they were being served by Robot EUREKEA.
Sitecore [2] is a customer experience management company
that provides web content management and multi-channel mar-
keting automation software, with the proven experience and
reliable architecture for assessing the maturity of the customer
experience. A service robotics programme for managing the
HRI is designed and developed(see Figure 1,2,3). The core
flow of the service robot model is to employ the informa-
tion collected by the robot through various sensors, gesture
actuators and advanced face recognition capability to respond
and provide interaction between the robots and customers. The
experiment placed the robot in an obvious position in the
restaurant. In-house customers and public passing-by could
easily be served by the robot and are attracted to interact with
the robot. The core flow of the service robot model is to apply

Fig. 1. .Intelligent Robot for Customer eXperience Maturity (iRCXM) Model
[3]

the information collected by the robot through various sensors,
gesture actuators and advanced face recognition capability to
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the interaction between the robot and the customers after a
certain amount of processing and feedback. The experiment
placed the robot in an obvious position in the restaurant. In-
house customers and public passing-by could easily be served
by the robot and are attracted to the store to interact with the
robot.

Fig. 2. Robot and human are interacting)

Fig. 3. Robot interaction system interface

The research used questionnaire and informal interview,
triangulated with researchers’ observation and automated data
collected by Robot Eureka to collect initial stakeholders’ ex-
periences. The research was conducted in three-fold:

• Customersrobot interactivities: demo of the humanoid
service robot, customers viewed menu on the robot and
took order, followed by other interactions such as cus-
tomers’ face registration & FAQs with Robot EUREKA;
Gesture control of the robot with hands, Robot-following
registered customer and duck- run game; and entertain-
ment such as customer chose the favourite videos or songs
for Robot EURKEA to play;

• Both online (iPad) and paper-based questionnaire with
ethical consent;

• Automated captured data during the HRI triangulated
with informal interview with customers and researchers’
observation.

III. INITIAL RESULTS AND PILOT FINDINGS

A total of 23 customers’ survey results were obtained from
the study. The overall results confirmed that most customers
showed a positive attitude towards the acceptance of the
service robot. 52% of customers are not worried that robots
will replace their jobs in the future, but 43% of customers
indicated that they are slightly worried about this situation.
All customers are able to accept robots as their colleagues and
co-work together with well entertained. Among the customers,
52% are happy to work with robots, and 26% can accept but
feel uncomfortable. It is worth noting that 48% of customers
can accept occasional errors in robots, and only 9% of cus-
tomers can accept frequent errors in robots. This means that
robots need to improve the accuracy of task execution to gain
greater customer acceptance. In addition, 36% of customers
worry that their information will be stolen from the robot by
others, indicating that data security technology and privacy
protection should be considered in the application scenario of
intelligent service robots. All customers were happy to provide
the consent for Robot EUREKA to capture their face and
names for customer registration and their faces captured by
the robot showing positive and happy emotion. Researchers
observed that all HRI sessions satisfied the “Attract” stage and
most HRI session satisfied the “Convert” stage for the iRCXM
model (see Figure 1). Only one customer, who refused to
interact with Robot EUREKA, and contended the below quote:
“I am afraid of your robot and I don’t like to see this. He will
take over my job!”. After a further conversation, that customer
is found as a part-time waitress and is resistant against the idea
of a “Robotic Waitress”. The pilot study demonstrates that
users show a positive acceptance of service-type intelligent
humanoid robots, but simultaneously they have concerns about
information security and the efficiency and reliability of robots
completing tasks.

IV. RESEARCH LIMITATIONS AND FUTURE WORK

The initial research population in the survey is limited and
at small-scale. Due to the influence of environmental factor of
noises, testing in a real environment will reduce the efficiency
of the task completion during HRI, which has a certain
impact on the results of customer acceptance surveys. Future
work will focus to a larger-scale of empirical experiment
with the machine learning algorithm to be integrate with
iRCXM model for enhancing the “Convert” and “Advocate”
stage. The changes of perception from “robot taking over
my job” to “service robot enhance my work” and is “the
extension of man” [4] need to be catalysed. Policy and ethical
recommendations for potential job lost issues and mindset
changes for upskilling are necessary.
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