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#UKRAS21: The 4th UK Robotics and Autonomous Systems
Conference

Patrick Holthaus, Farshid Amirabdollahian, Claire Asher, Arthur Richards

On behalf of the Organising and Advisory Committee we
take great pleasure in welcoming students, researchers and
experts in robotics virtually to #UKRAS21, the 4th UK-RAS
Conference for PhD Students & Early-Career Researchers,
organised by the EPSRC UK-RAS Network1 in collaboration
with Robot House2 at the University of Hertfordshire. This
exciting virtual event is specifically designed for PhD students
and early-career robotics and autonomous systems researchers
of the UK-RAS Network and will foster research progress and
offer opportunities for networking.

I. AIMS

The aim of #UKRAS21 is to promote quality research,
networking, and community building for PhD students and
practitioners at the frontier of science and technology in intelli-
gent robots and systems, by discussing the latest advancements
in this fast growing and exciting field. In the call for papers, we
were particularly looking for submissions in areas including:

• Artificial Intelligence and Robotics
• Assistive Technologies and Rehabilitation
• Smart-Home and Robotics
• Virtual and Remote Robotics
• Robotics Research Methods During Social Restrictions
• Novel and Enabling Technologies

II. TOPICS

This year’s theme focuses on robotics at home. We have
identified three focus areas to examine robotics and au-
tonomous systems within our call for papers that are each
covered by an inspiring keynote and four oral presentations
from authors of accepted papers: The focus area robotics for

use in the home considers aspects of rapid prototyping, safety,
assisted living, rehabilitation robotics, technology acceptance,
and diverse user groups. Keynote speaker Prof. Ana Paiva (In-
stituto Superior Técnico, University of Lisbon and coordinator
of GAIPS at INESC-ID) will talk about the engineering of
sociality and collaboration between humans and robots. The
oral paper presentations in this area are Exploring Human-
Dog Attachment Behaviours and their Translation to a Robotic
Platform [1]; Older adults’ perceptions of Socially Assistive
Robots [2]; Requirements for a home-based rehabilitation
device for hand and wrist therapy after stroke [3]; and Robot
House Human Activity Recognition Dataset [4].

Patrick Holthaus (University of Hertfordshire) and Farshid Amirabdollahian
(University of Hertfordshire) are General Chair and General Co-Chair of
#UKRAS21. Claire Asher (UK-RAS Network) and Arthur Richards (Bristol
Robotics Lab) are Technical Chair and Programme Chair of #UKRAS21.

1https://ukras.org/
2https://robothouse.herts.ac.uk/

A second focus area of #UKRAS21 aims to to discuss
innovations in delivering robotics research while working

from home, addressing challenges in remote working, on-line
experimentation, digital twinning, or simulation. A keynote
talk will be held by Prof. Ana Cavalcanti (Royal Academy of
Engineering Chair in Emerging Technologies, University of
York) about the RoboStar modelling stack and how to tackle
the reality gap. The oral presentations in this area are: Test
Framework for a Virtual Competition Testbed [5]; Visually-
based Prediction of Artist’s Drawing [6]; Design of a Trans-
forming Myriapod Robot for Multimodal Locomotion [7]; and
Development of a Teleoperative Quadrupedal Manipulator [8].

In a third focus area, we seek to understand how different
robotic and autonomous systems make themselves at home by
being tailored to suit their respective working environments,
such as factories, offshore platforms, power plants, or disaster
scenes. We are looking forward to a keynote by Dr Jeliza-
veta Konstantinova (Ocado Technology) that addresses robots
the innovation at Ocado and the SecondHands project. The
oral presentations in this area are: An Augmented Reality
System for Safe Human-Robot Collaboration [9]; Firefighter
Assistance Robot [10]; Small datasets for fruit detection with
transfer learning [11]; and A Non-Axisymmetric Parallel Ma-
nipulator for Head Stabilisation in Vitreoretinal Surgery [12].

III. STATISTICS AND FORMAT

We have received 35 submissions, of which 12 were ac-
cepted as oral presentations in a single track conference
format. 17 submissions were invited to produce a brief video
clip of their work that we will present in a compilation during
the main conference. Authors can then discuss their work with
the other delegates in a parallel interactive session, which is
our online replacement for the poster session in previous years.
We want to thank Claire Asher and Christoph Salge for their
dedication in preparing and running the online meeting. In
total, we accepted 84% of submissions. Accepted papers are
from 22 UK universities and one international collaboration,
with ratios shown in Fig. 1. Last year’s host institution and
this year’s host of TAROS3, the University of Lincoln as well
as this year’s host, the University of Hertfordshire and King’s
College London are the most frequent author affiliations.

All papers have received two or more independent reviews
from the 40 reviewers that participated in the selection process.
The majority of reviews are from the Universities of Hertford-
shire, Leeds, Lincoln, and Sheffield Hallam. Fig. 2 depicts all
16 reviewer affiliations.

3https://lcas.lincoln.ac.uk/wp/taros-2021/
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Fig. 1. Distribution of author affiliations

IV. PROGRAMME

We would like to express our gratitude for handling the re-
view process and the selection of papers to the members of the
programme committee, consisting of Farshid Amirabdollahian,
Claire Asher, Frank Förster, Charles Fox, Patrick Holthaus,
Gabriella Lakatos, Arthur Richards, Alessandra Rossi, and
Christoph Salge.

The committee encouraged authors that are early career
researchers to participate in the review process and paired
each of them with a more experienced researcher from another
institute. We greatly acknowledge the support of 17 reviewers
who we consider early career researchers. Additional reviewers
were sourced from other UK-RAS member organisations. In
total, all submissions have been reviewed by at least two
independent reviewers, scoring between 3 (strong accept) and
-3 (strong reject), with 0 as borderline. Occasionally, papers
were reviewed more than twice, for example where reviewer
opinions differed significantly. The conference aims to be
inclusive so all papers with average scores of 0 or greater
have been accepted.

The 12 highest scoring papers were selected for oral
presentation, subject to a limit of no more than one oral
presentation per author. Keynotes were invited at the discretion
of the programme committee as well established experts within
their respective focus area. Awards will be given to the best
paper and interactive presentation as selected by a committee
comprising programme committee members of #UKRAS21.

We would particularly like to thank Abolfazl Zaraki, Adrian
Salazar Gomez, Aidan Scannell, Alessandro Di Nuovo, Amy
K. Hoover, Antonia Tzemanaki, Ataollah Ramezan Shirazi,
Bente Riegler, Burak Kizilkaya, Catherine Menon, Chengxu
Zhou, Christopher Peers, Dan Dai, Elizabeth Sklar, Emanuele
De Pellegrin, Emily Rolley-Parnell, Florence Sherry, Hans
Natalius, Ildar Farkhatdinov, Ionut Moraru, Junfeng Gao,
Karen Archer, Kaspar Althoefer, Leonardo Guevara, Luke
Wood, Mark Judge, Maryam Banitalebi Dehkordi, Md Zia Ud-

Fig. 2. Distribution of reviewer affiliations

din, Mohamad Reza Shahabian Alashti, Mohammad Hossein
Bamorovat Abadi, Mohammed Rezwan Rahman, Moustafa
Motawei, Mubashir Ahmad, Nicola Camp, Nicola Catenacci
Volpi, Robert Richardson, Simon Parsons, Steve Maddock,
Vignesh Velmurugan, and Yaniel Carreno for contributing their
reviews to the conference.
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An Augmented Reality System for Safe
Human-Robot Collaboration*

1st Yunus Emre Cogurcu
Department of Computer Science

The University of Sheffield
Sheffield, United Kingdom
yecogurcu1@sheffield.ac.uk

2nd Steve Maddock
Department of Computer Science

The University of Sheffield
Sheffield, United Kingdom
s.maddock@sheffield.ac.uk

Abstract—Closer interaction in Human-Robot Collaboration
(HRC) could result in increased worker efficiency in manu-
facturing situations. However, physical cages often limit this.
Our research is investigating the potential for using Augmented
Reality (AR) to visualise virtual safety zones, thus replacing real
cages. This paper presents initial experiments towards addressing
the issues of how to display the safety zones and what size they
should be in relation to a robot arm in order to ensure safe
working practices.

Index Terms—augmented reality (AR), safety, human-robot
collaboration (HRC)

I. INTRODUCTION

Industry standards and practices for human-robot collabora-
tion (HRC) are based on the principle of separating operator
and robot work areas and detecting separation violations using
sensors or physical cages [10]. However, more flexibility and
efficiency could potentially be achieved if there were closer
cooperation between human and robot [3], [6]. Augmented
Reality (AR) could be used to achieve this by adding virtual
safety cages to an environment instead of real cages.

AR in HRC has been investigated in terms of human safety
and overall system productivity [7], [10], with [7] concluding
that AR is a powerful tool for the visualisation of robot
operations and safe areas. Different kinds of virtual safety
barrier have been considered, including 2D fields [6], safety
curtains [3] and user-configurable barriers (including around
the user) [4], along with more general work on how to provide
feedback for users [9]. However, the issues of safety zone size
in relation to a robot arm and how to display the safety zones
remain unresolved. Our paper considers these issues.

The initial experiments we report on use a virtual robot
arm. This creates a safe testing environment, allowing quicker,
safe feedback on parameter variation, e.g. safety zone size.
The system makes use of Robot Operating System (ROS-
Industrial) and HoloLens 2 so the work could easily transfer
to using a real robot arm (when COVID restrictions allow).

* This work was supported by the Ministry of National Education (Turkey).

II. THE SYSTEM

The system brings together Unity, ROS-Industrial and
HoloLens 2. Whilst earlier AR studies made use of HoloLens 1
(e.g.[3], [6]), HoloLens 2 is lighter and more ergonomic that
the HoloLens 1, has an increased field of view (FOV) and
is now used widely in industry. The Unity real-time engine
on Windows 10 is used as the development environment and
to deploy HoloLens apps. ROS-Industrial on Linux (Ubuntu
18.04 in our system) is used to control the robot arm. ROS-
Sharp [2] is used as the basis for communication between
Unity and ROS. A similar ROS-Sharp-based approach is
used to communicate between ROS and HoloLens, with the
HoloLens used for AR display and user interaction.

The general idea behind our approach to AR is to align
a virtual robot arm with a real robot arm using a QR code
and some initial user interaction. HoloLens 2 is able to detect
QR codes and establish a coordinate system for the QR code
object’s real-world location. Thereafter ROS commands can
be used to keep the real robot arm and the virtual robot arm
in sync, with the virtual robot arm being made invisible (a
phantom model), but facilitating the addition and HoloLens
display of AR information in relation to the real robot arm.
The initial tests are done as a simulation, for safety purposes,
but the same processes could be used for a real robot arm once
the virtual and real robot arms are aligned.

III. SAFETY ZONE EXPERIMENTS

For the initial experiments, the system is used to control a
virtual UR10 robot arm whilst using AR to overlay a safety
zone around the robot arm. The kinematic calculations for the
trajectory of the robot arm were performed using the ROS
MoveIt library. The safety zones are used in detecting prox-
imity violations so that the user is warned and the movement
of the robot arm is stopped. The questions to be considered
are how large the safety zones should be and how to display
them.

The first consideration is safety zone size. However, there is
some uncertainty in the published safety standards about size
[1]. Four approaches were considered. Safety Zone 1 is a large
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static safety zone that includes a range of possible points that
the robot arm can reach (figures 1a, 1b and 1c show cuboid,
cylinder and sphere versions, respectively). Safety Zone 2
is again static and encloses only the volume required for a
specific task (figure 1d). Safety Zone 3 is a dynamic volume
that grows and shrinks as the robot arm moves (figure 1e).
Safety Zone 4 wraps the robot arm in a number of closer-
fitting shapes that move with the robot arm (figure 1f).

Safety Zone 1 (cuboid version) is similar to a standard safety
cage, keeping the user away from the robot arm for a range of
possible tasks. Overall, Safety Zone 1 is the safest approach
of the four, but may not produce the most effective HRC. The
cuboid version includes dead space that the robot arm never
reaches and is perhaps too general depending on how often
each of the range of tasks it includes is done. The amount
of dead space can be reduced by changing the shape of the
safety zone to a cylinder or sphere, as shown in figures 1b and
1c. Safety Zone 2 shrinks the safety zone covering only the
zone required for the specific task. This would be equivalent
to a physical cage that could be reconfigured, possibly saving
on factory floor space. Safety Zones 3 and 4 provide the
opportunity to work more closely with the robot arm, but are
potentially less safe that the other two static safety zones. A
range of factors means that a dynamic safety margin must
be considered in each case. The speed of the user and the
robot arm become more important. For example, ISO 13855
[8] recommends that if the speed of the operator or user is
2000mm/s and the robot arm speed is 1600mm/s, the safety
distance should be greater than 500mm. However, humans
are unpredictable, different users may feel safer with larger
safety zones than calculated, and robot sensors have latencies
that must also be considered. These issues complicate the
calculation of safety margins.

The second aspect is how to display the safety zones.
This is currently user configurable. Figures 1f and 1g show
highlighted edges and enhanced edges, respectively. It is also
possible to change the colour used to display the safety zone.
Other work [3], [6] does not have this level of user config-
uration. Red was chosen as the safety zone colour as it is a
warning signal in many countries and edge highlighting makes
the volumetric space of the safety zone clearer. However, user
testing is still required to determine the best way to visualise
the safety zones.

The warning message that is displayed when a safety zone
is breached by the user. This causes the virtual robot arm to
immediately stop moving.

IV. CONCLUSIONS

We have presented a system that uses Microsoft HoloLens
2 to display AR information in relation to a robot arm. For
safety reasons, initial experiments have used a virtual robot
arm instead of a real robot arm. Different safety zones are
visualised around the robot arm in a range of visualisation
styles and a warning is given if the safety zone is violated
by the user. The use of safety zones is still an active research
challenge [5]. The next steps in our work are to conduct user

(a) Large static safety zone (cube) to
cover a range of robot movements

(b) Cylinder version
of figure 1a

(c) Sphere version of
figure 1a

(d) Task-specific
static safety
zone with edge
highlighting

(e) Dynamic
safety zone
resizing as the
robot arm moves

(f) Moving
sectional
safety zones
with edge
highlighting

(g)
Enhanced
edge
highlighting
for figure 1f

Fig. 1: Safety zone visualisations

tests on how best to display safety information and to test
the system with a real robot arm. The target system for these
experiments will be a spot welding system which currently
uses a combination of cage and sensors to separate a user and
the robot arm and the spot welding machinery.
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Small datasets for fruit detection with transfer
learning*

Dan Dai
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Abstract—A common approach to the problem of fruit de-

tection in images is to design a deep learning network and

train a model to locate objects, using bounding boxes to identify

regions containing fruit. However, this requires sufficient data

and presents challenges for small datasets. Transfer learning,

which acquires knowledge from a source domain and brings that

to a new target domain, can produce improved performance in

the target domain. The work discussed in this paper shows the

application of transfer learning for fruit detection with small

datasets and presents analysis between the number of training

images in source and target domains. This investigation is based

on three datasets: two containing tomatoes and one containing

strawberries. Experimental results indicate that transfer learning

can enhance prediction with limited data.

Index Terms—fruit detection, limited datasets, transfer learn-

ing, target domain

I. INTRODUCTION

Within the task domain of plant phenotyping, fruit detection
is a difficult problem, particularly when trying to identify
objects of interest in small image datasets. Deep learning

is a common approach, using multi-layered Convolutional

Neural Networks (CNNs) to obtain feature maps, but these
networks require sufficient numbers of training examples in
order to produce accurate results. Transfer learning enables
reusing knowledge acquired previously from other tasks or
applications and could greatly improve the performance of
learning by avoiding various expensive efforts [7].

Recently, several deep learning architectures have been
developed from the basic Region-based CNN (R-CNN) [4],
including Faster R-CNN [9], YOLO [8] and Single Shot

MultiBox Detector (SSD) [6]. Most of the machine learning ap-
proaches to fruit detection apply these Faster or Mask R-CNN
methods [2], [13]. In contrast, transfer learning approaches
applied to the agriculture domain mainly focus on identifying
plant species [5], classifying pests [12] or diseases [1].

The general principle underlying transfer learning is to take
a model trained from data in a source domain and adjust this
model to a new dataset in a target domain. Research in this
area has explored the impact of the size of the source dataset
and number of labelled examples on the results [1], [2]; but
little work has studied these properties in the target domain.
The work presented here asks the following questions: Is
the size of the source and/or target training sets associated
with the accuracy of detection? Is it possible to get the ideal

performance in the target domain without carrying out training
on large amounts of annotated data (source domain)?

As we already have some knowledge learned from the
source domain, therefore it can be saving model training time
and resources consumed for the task.

II. METHODS

This section presents the basic SSD [6] framework we
applied for strawberry and tomato detection, then introduces
the transfer learning methods employed. We analyse the rela-
tionship between the training dataset size in the source domain
and the number of labels in the target domain with respect to
the results obtained.

SSD is a one-stage detection system; it eliminates proposal
generation and subsequent pixels or feature re-sampling stages,
then encapsulates all computation in a single network. This
model contains multi-scale feature maps and convolutional
predictors for detection, sets default bounding boxes and
aspect ratios and allows for different default bounding box
shapes in several feature maps to discretize the space of
predicted bounding boxes efficiently.

The experiments presented here explore the application of
transfer learning for detecting fruits in images. The features
learned from a source dataset are transferred to two different
new target datasets, each of which may not contain enough
training data, due to a paucity of examples or labels. We
analyse our results by comparing the accuracy values when
transferring from the source to each target, investigating the
relationship between these metrics and sizes of the source and
target training sets.

(a) T1 (b) T2 (c) SR

Fig. 1. Tomato and strawberry examples in our datasets.
III. EXPERIMENTAL SETUP

a) Datasets and Training Parameters: Our experimental
data is comprised of three datasets: two different types of
tomato (T1, T2) and strawberry (SR). These datasets are
collected under different conditions: the strawberry images
are all from a polytunnel, whereas the tomato images in T1
are from a garden, showing different growth stages, and the
images in T2 are from the Internet.The backgrounds, lighting
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conditions and other factors differ, so there is some diversity
across the data sets. Detailed information about our datasets is
shown in Table I and Fig. 1. In our SSD model, the backbone
is VGG-16 [11] and is pre-trained with ImageNet [3]. The
batch size is 4 and the learning rate is 1e � 4 with the SGD
optimizer [10] setting the momentum to 0.9.

TABLE I
NUMBERS OF IMAGES IN OUR DATASETS

Dataset Total Training Testing

T1 496 396 (80%) 100 (20%)
T2 73 59 (80%) 14 (20%)
SR 124 99 (80%) 25 (20%)

b) Transfer learning between tomato and strawberry data

sets: Our goal is to quantify the influences of the numbers of
training images in the source (T1) and target domains (SR or
T2). The number of training images are randomly partitioned
as follows: into four parts for the source domain, T11; into
twelve parts for SR2; and into seven parts for T23. The number
of images in each test set (SR and T2) is almost 20% of each
total. Table II shows the results of transferring the T1 model to
different sized datasets of SR and T2 images. Results are also
shown graphically in Fig 2. For comparison, we also trained
SSD models with the SR and T2 datasets (3000 iterations).
The mAP values we obtained for these models are 0.354 and
0.789, respectively. TABLE II

RESULTS OF TRAINING ON SR AND T2 AND SELECTED MAP RESULTS
FOR TRANSFER LEARNING FROM DIFFERENT-SIZED T1 DATASETS TO SR

AND T2 (BEST PERFORMANCE IN EACH ROW IN BOLD)

Training/test mAP Training/test mAP
(SR) (99/25) 0.354 (T2) (59/14) 0.789

Source (T1)
(training/test) Target 0 10 50 60(59)1 90 Avg

62(49/13) SR 0.076 0.299 0.393 0.383 0.380 0.3363
T2 0.779 0.739 0.796 0.788 – 2 0.7714

124(99/25) SR 0.108 0.274 0.350 0.394 0.338 0.3154
T2 0.798 0.794 0.813 0.764 –2 0.7904

248(198/50) SR 0.067 0.334 0.359 0.401 0.381 0.3368

T2 0.827 0.764 0.827 0.829 –2 0.7961

496(396/100) SR 0.052 0.304 0.303 0.378 0.380 0.3240
T2 0.810 0.759 0.838 0.811 –2 0.7933

Avg SR 0.0758 0.3027 0.3513 0.3890 0.3698
T2 0.8035 0.7640 0.8186 0.7980 –2

1 60(59) means 60 training images for SR and 59 for T2.
2 – refers to the fact that T2 has fewer training images (i.e. < 90)If we use the source model without any re-training (i.e.

number of target training images is 0), as the number of
training images in T1 increases, fruit detection performance
in SR decreases. This is because of the feature difference be-
tween strawberry and tomato: with more source data training,
features learned by the model are more related to tomatoes.
In contrast, detection accuracy for T2 improves as the source
dataset size increases. We also find that T2 provides better
detection results if we do not use any images to re-train the
source model.

Examining the relation between the numbers of training
images in the source and target datasets, the best average

1The four partitions of the T1 dataset each contain {62,124,248,496}
images, respectively.

2The twelve partitions of the SR dataset each contain
{0,5,10,20,30,40,50,60,70,80,90,99} images, respectively.

3The seven partitions of the T2 dataset each contain {0,5,10,20,40,50,59}
images, respectively.

Fig. 2. Results of transfer learning from T1 to SR (left) and T2 (right). mAP
is shown for different numbers of images.
performance is with T1 = 248. For T2, the average results
are better than training on the target domain only (0.7961 >
0.789). As the size of the source training dataset increases,
the detection results in the target domain seem to reach a
saturation state. This suggests that we don’t need to train and
label large amounts of data in the target domain in order to
get high performance, thus saving model training time and
resources consumed for the task. Indeed, judging from the
current results, using a target dataset that is almost half the
size of the source dataset achieves high detection performance.

IV. SUMMARY AND NEXT STEPS

We applied transfer learning to fruit detection in limited
datasets and analysed the impact of the number of the training
images in the source and target domains. Next, we will
consider how to reduce the features distribution differences
between the source and target domains to improve detection
performance, discuss and explain the effects of transfer from
small samples to large data sets.
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Abstract—This work sets out to explore the supporting role an

intelligent robotics system might play in gathering and processing

the initial data from fire incidents. Initial findings from this

developing project indicate that having a continually updating

map of internal conditions improves accuracy of route planning

and potentially the ability of crews to reach casualties and

stabilise the building with increased efficiency.

Index Terms—Firefighting Robot, Field Robotics, Planning,

Mapping, Simulation

I. INTRODUCTION

Cognitive load theory suggests that too much stimuli offered
at one time can cause key information to be missed [1]. The
maximum capacity of the short-term memory has now been
found to be only 4±1 pieces of information at one time [2].
Fire incidents are complex environments at which it is essential
for crews to have as much information as possible, including
during approach and upon arrival at the scene. Duty of care
to preserve life (both crew and casualties) is the overriding
priority, along with considerations for the environment and
building. Existing protocol [3] states that, when a major fire
incident is declared, a human command structure can be set
up. Such a structure allows for the decision making and
processing of stimuli to be spread across a large body of
personnel reducing cognitive load on an individual. Along
with a command structure, the technique of sectorisation can
be used to divide large buildings into smaller sections, further
reducing the amount of stimuli one team or individual needs to
process. However, there is limited information and preparation
opportunities whilst the crews are en route. UK Government
statistics show the average response time to a fire incident,
within the UK, is 8 minutes and 49 seconds [4]. Thus, the
time after arrival is used to formulate a plan to tackle the
incident, often using paper maps and further witness testimony.
By creating supportive intelligent robotic systems, containing
layout, construction and internal hazard information, the 8
minute response time could be better used to develop and
evaluate a plan(s) for the incident.

II. COMPUTER SIMULATION

Whilst there is much work taking place in the field of
physical firefighter assistance robotics [5][6][7], due to the
scale of such projects, together with the COVID19 global-
pandemic situation, it was decided that all initial research
work would be conducted using computer simulation software.

Simulation software allows for the generation of digital models
of real-world objects and environments. These digital models
provide researchers the ability to change any detail of the
model allowing for full flexibility of the environments to
make them as realistic and accurate as possible and create any
scenarios of the environment required. To enable this realism
the software requires a physics engine to apply real world
physics to the models generated [8].

TABLE I
SIMULATION SOFTWARE REQUIRMENTS

Functional Requirments Non-Functional Requirments

Accurate Physics Engine Easy to use interface
Realistic 3D renderer Simple documentation
Real-time playback Low impact on computer resources

C, Ros and Matlab Support

Table I summarises the main requirements of the simulation
software to be used for this project, along with optional
requirements of supporting C++ or Python. The packages
considered for this work were: Webots [9], Gazebo [10] and
CoppeliaSim [11]. In order to determine the most appropriate
of these, Multiple Criteria Decision Analysis (MCDA) [12]
was used. Table II shows the results of the analysis, leading
to the use of Webots for this work.

TABLE II
MCDA RESULTS

Criteria Rank Weight Score

Gazebo Webots CoppeliaSim
Controller 1 40 80 200 200

Physics Engine 2 30 150 150 150
User interface 4 10 20 50 20
3D renderer 3 20 60 80 60

Total 100 310 480 430

III. IMPLEMENTATION

As an initial proof of concept, the A* algorithm [13] was
chosen as the search method to be used since it employs a
heuristic based search. A* was chosen over other algorithms
such as simultaneous localisation and mapping (SLAM) [14]
due to its capacity as an informed search approach, which
allows it to analyse a map and plot the quickest route. For this
research, the system will be provided with an initial structural
outline of the building, which will be given in the form of a
binary occupancy map [15]. Real world implementation could
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use CCTV [16], drones [17], ad-hoc networks interacting with
smart devices [18] or building information modelling [19] to
generate the occupancy map but for this research this was
provided using a graphical user interface to mark the outline on
a grid. Initial route planning was performed on this occupancy
map. Once the system was following the planned route, it
was able to use LiDar [20] and distance sensors to update the
map with potential hazards encountered, replanning to avoid
obstacles. When the system reaches its target location it then
provides a final updated version of the binary occupancy.

Fig. 1. Scenario Overviews

A straightforward robotics test system was modelled and
used in this first phase of the project. To sense the external
environment the system uses four distance sensors. Their
trajectories are shown by the red lines in figure 1. Additionally
a 360 degree lidar sensor was used. For internal sensing, the
system has two motor encoders one for each wheel along with
inertial units for sensing roll, pitch, and yaw.

IV. EXECUTION AND RESULTS

Each scenario was completed in Webots and all files and
maps provided were generated ahead of time and were not
included in the execution speeds recorded. As this is early-
stage work, 3 simple scenarios have been executed. Each
scenario defined a start (green square) and target point (red
square) with obstacles (black square) and available space
(white square). Each scenario was given the initial map shown
in Fig2 A and the final updated maps are shown in Fig 2 A,
B and C with the robot’s path shown by the yellow path.
Definitions of the three scenarios are also shown below.

• Scenario 1 – Static environment, no obstacles (Fig2 A).
• Scenario 2 – Static environment, one obstacle (Fig2 B).
• Scenario 3 – Static environment, two obstacles (Fig2 C).

Fig. 2. Scenario Overviews

TABLE III
SIMULATION RESULTS

Scenario Execution Times Observation

Scenario 1 20s Reached target sqaure
Scenario 2 49s Reached target sqaure
Scenario 3 49s Reached target sqaure

V. CONCLUSION AND FUTURE WORK

Early findings (Table III) suggest a continually updating
map of an internal structure and hazards could expedite
decision making, locate trapped civilians, identify fire sources,
potential hazards and structural defects by passing this infor-
mation to inbound fire crews. Execution times show the robot
can quickly move to its target location while simultaneously
mapping its environment and re-planning its route when re-
quired. To further analyse the benefit this robot could pro-
vide, further simulation testing will be completed in realistic
environments. Interrogation of simulation results can provide
evidence of whether the system can efficiently map a large
complex environment but also complete the mapping before
fire crews arrive on the scene (8 minutes and 49 seconds).
To test the full impact this system could have on reducing
cognitive load, virtual reality (VR) could be used to put
firefighters in realistic situations but with no risk to life.
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Abstract—A non-axisymmetric parallel manipulator headrest
design was previously proposed to counter patient head motion
during ophthalmic surgery, and a non-motorized prototype was
built. Custom linear actuators were designed, and installed to
the headrest manipulator prototype in preparation for kinematic
performance test. An inverse kinematic-based control algorithm
was implemented, and initial kinematic testing was done. Finally,
the future plans for the research are briefly explained.

Index Terms—parallel robots, medical robots and systems,
actuation and joint mechanisms

I. INTRODUCTION

Involuntary patient head motion is one of the biggest
obstacles in achieving efficacy in stem cell implantation [1],
[2] and gene vector delivery under local anaesthesia. The
precision required to target thin retinal layers, of micrometer
dimensions, is several orders of magnitude below the motion
caused by patient head repositioning. During anterior segment
ophthalmic surgery, for example, involuntary patient head
motion can be as much as 11 mm [3]. Most researches that aim
to mitigate head movement had focused on how to constraint
the head, with examples such as the head fixation device
for iRAM!S robot [4] and the Granular-Jamming Headband
[5]. On the other hand, other approaches, such as countering
head motion, were rarely explored. A non-axisymmetric head-
rest manipulator proposed for this purpose was in the early
stages of research, with a non-motorized prototype alongside
its inverse kinematic, statics and performance analysis were
presented in [6]. The current paper presents motorisation and
control considerations for an updated robot prototype towards
evaluating its kinematics performance.

II. MECHANISM DESIGN

We summarise the manipulator design explained in depth
in [6]. The manipulator comprised 3 planar linear prismatic

This research was supported by Sir Michael Uren Foundation and Univer-
sity College London Overseas Research Scholarship. Christos Bergeles and
Lyndon da Cruz equally contributed to this research.

Fig. 1. Custom linear-prismatic actuator construction and final assembly.

actuator pairs, that were arranged in a non-axisymmetric man-
ner. The non-axisymmetric arrangement was used to provide
a space for the patient’s neck, as the patient’s head was
positioned within end-effector perimeter to fulfil system height
requirement, as mentioned in [6]. Meanwhile, the 6 actuators
allow for translation and rotation along all axes. This design
allows for easier control, due to the patient’s head located
closer to the end-effector center of mass. In the current paper,
the linear struts embedded in [6] have now been swapped for
linear actuators. To fulfil dimensional constraint requirements,
6 custom linear-prismatic actuators with stroke lengths of
150mm, 160mm, and 200mm were used.

Lead screws were used within the custom prismatic actua-
tors to allow actuator extension and retraction motion, whilst
linear guide rails were mounted parallel to the lead screw
to constraint the actuators from rotational motion. NEMA 17
stepper motors were mounted to the actuator using 3D printed
custom motor mounts. The motor mounts feature several slots,
which allow the belt tension to be adjusted by moving the
motor along the slots. The motor mounts were designed to
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Fig. 2. Manipulator prototype, with the end-effector positioned in several different positions (X , Y , Z) and orientations (✓x, ✓y , ✓z) relative to the origin,
(a) [0, 0, 320, 0�, 15�, 5�], (b) [�50, 50, 290, �5�, �5�, 5�], and (c) [50, 50, 360, 5�, 5�, 5�].

be replaceable, to account for the need to use motors with
different specifications in further steps of the research. The
stepper motors were connected to the lead screws via belt-
pulley system with 2 : 1 reduction ratio. Lead screw and motor
position within the actuator were arranged to give minimum
actuator height when the actuator is in fully-retracted state.
Fig. 1 shows the construction of the linear actuators.

Six A4988 stepper motor drivers were used to control the
stepper motors, and Arduino Mega2560 was used to provide
input to the motor drivers. The manipulator inverse kinematic
model, which was briefly explained in [6], was implemented
in MATLAB to compute the length of each actuator when
provided the desired end-effector pose. The resulting actuator
lengths were then compared with the current actuator lengths,
and the actuator value differences were sent to the Arduino
through serial communication using Simulink.

To avoid the risk of damaging the manipulator, each of
the parallel manipulator actuator needed to be associated with
specific actuator values. Therefore, the manipulator prototype
was tested by positioning the end-effector on random com-
bination of positions and orientations within the manipulator
workspace. The position and orientation of the end-effector
were expressed in mm and degrees respectively, relative to
the global origin located at the manipulator base.

III. RESULTS

The assembled manipulator prototype, equipped with mo-
torized linear actuators, is shown in Fig. 3, with point O being
the manipulator global origin.

The actuator setup mentioned in Section II was proven to
be able to move the end-effector to several different poses. In
addition to positions, these poses can also include orientations
relative to all 3 Axes. Some of these poses are shown in Fig. 2.
Furthermore, the manipulator did not break when the end-
effector moves, which proved that inverse kinematic based
control system works well. The prototype manipulator also
fulfilled the workspace requirement mentioned in [6].

IV. FUTURE WORK

This paper detailed the initial steps taken to prepare the
non-axisymmetric headrest manipulator prototype for kine-

Fig. 3. Manipulator prototype, with a proxy head on the end-effector.

matic performance test. The next step of this work will be
to evaluate and quantify the performance of the motorized
headrest manipulator using optical tracking of the end-effector.
Closed loop control will be implemented in a patient-head
motion simulation scenario, and the end-effector design will
be updated to accommodate a surgical pillow.
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Abstract—Virtual environments have been utilised in robotics
research as a tool to assess systems before deploying them in
the field. The COVID-19 pandemic has brought about additional
motivation for the development of virtual benchmarks in order
to aid in safe and productive development. In-person robotics
competitions have also halted, thus limiting the scope of op-
portunities for students and researchers. We implemented the
structure of a service robotics competition into an extendable
and adaptable virtual scoring environment. The competition
challenges the state of the art in home service robotics by
presenting realistic household tasks for robots to complete. The
virtual environment provides a foundation for competition teams
to assess their systems when accessing the physical environment
is not possible. We believe that utilising virtual environments as a
means of assessment will lead to other benefits such as increased
access and generalisation.

Index Terms—Robotic Competitions, Benchmarking, Simula-
tion, Human-Robot Interaction

I. INTRODUCTION

Competitions are an important tool for pushing the state
of the art in robotics applications. They also provide new
researchers with practical skills and knowledge used through-
out their career. Hosting physical competitions has not been
possible during the COVID-19 pandemic. This has highlighted
the need for tools which allow teams to continue their work
regardless of access to the physical competition environment.

In this work we target the European Robotics League Con-
sumer Service Robots competition (ERL Consumer for short).
Teams are challenged with performing realistic household
tasks for an older adult, Granny Annie. The competition is
normally hosted at locations across Europe with accredited
testbeds designed to appear like a typical small apartment.
The competition organisers provide a handbook which de-
scribes the tasks and scoring criteria. Additionally, functional
benchmarks provide a method to assess a team’s solution in a
single capability (e.g. natural language understanding). Both
the tasks and functional benchmarks are performed across a
three-day period. They are partially automated, but require
human intervention for purposes such as setting up objects
in the environment.

To our knowledge, there is no automated virtual environ-
ment where teams can test their system against the ERL

competition tasks and functional benchmarks. We identified
this gap first-hand when attempting to produce our own
competition entry while working under the restrictions of the
COVID-19 lockdown in the UK. In this paper we present our
virtual benchmark for the ERL Consumer competition.

II. BACKGROUND

Robotics competitions have made a shift to becoming more
virtual, which has only increased in prominence since the
start of the COVID-19 pandemic. Some competitions such
as the SpaceRobotsChallenge have opted to use simulation
since sending competition robots to space would be infeasi-
ble/unreasonable. In recognition of the disruptive nature of
the COVID-19 pandemic, other competitions have shifted
towards virtual platforms such the VirtualRobotX competition.
More recently other competitions have announced virtual
competitions entries such as 2021 RoboCup@Home and 2021
RoboCup Rescue.

In the context of service robotics, OpenRobotics, in collab-
oration with Hitatchi, created a virtual robotics competition
called ServiceSim [1]. The competition’s focus is HRI in an
office environment. In an effort to facilitate research in the
field of social robotics and specifically the learning of social
norms (e.g. proxemics), Pimentel and Aquino-Junior [2] have
developed a virtual environment with a scoring mechanism
using ROS, Gazebo and OpenAI. Most recently, SEAN by
Nathan Tsoi et al. [3] developed a virtual world with the focus
on the development and evaluation of algorithms for social
navigation (dynamic conditions such as simulated pedestrians,
cars, etc.).

Robotics competitions are not only important for robotics
research, but also are used to educate and engage students. A
good example of this is the competition RoboCupJunior [4].
Virtual environments can grant students access to state of the
art equipment in cases where it otherwise would not have been
possible.

III. VIRTUAL BENCHMARK

The virtual benchmark is a system for testing ROS-based
ERL Consumer competition solutions in an automated virtual
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environment. When the user starts the benchmark, the simula-

tion environment, which has been configured for a given sce-

nario, is launched. The user’s competition solution performs
the task and notifies the virtual referee upon completion. The
referee evaluates the task performance and returns a score.

The simulation environment is a Gazebo world designed
with the same furniture and overall dimensions as the physi-
cal Heriot-Watt University Robotic Assisted Living Testbed
(RALT) (Fig. 1). To configure the world for a particular
scenario, we utilise the large number of Gazebo-compatible
object models available online (e.g. boxes of food, standing
human). Each scenario is built using a separate roslaunch
file which describes the positions of the objects as well as the
starting position of the robot. As in the physical competition,
the team has time to ensure the robot is fully initialised before
the scenario begins.

Fig. 1. The virtual RALT Gazebo world

To start the scenario, the user launches the virtual referee,
which is based on the Referee, Scoring and Benchmarking Box
(RSBB) used in the ERL Consumer competition. In addition to
its role in scoring and scenario monitoring, the RSBB provides
a single interface for smart home features through which the
robot can interact with devices in the home. Importantly, the
virtual referee employs the same ROS topics used in the RSBB
in the physical competition, meaning teams don’t have to
change their solution to interact with our referee. Once the user
launches the referee, a start signal is sent to the robot which
contains the scenario context. The scenario context could be:

• The smart doorbell has been activated and the robot must
greet the visitor.

• Granny Annie has used her smart tablet to “summon” the
robot to her.

• Granny Annie makes a natural language request.
The virtual referee then waits for the robot to signal it has

completed the task. Once the signal is received, the state of
the environment (using gazebo model states) is examined to
provide a score for the run.

The virtual benchmark contains the following scenario, a
simplified version of the ERL Consumer competition task
“catering for Granny Annie’s comfort”. Granny Annie sum-
mons the robot through the smart tablet and requests the
cracker box from the kitchen. The robot must interpret this

command and retrieve the box. Once the task is completed,
the robot notifies the referee and receives a score of two for
(1) removing the box from the kitchen island and (2) placing
the box next to Granny Annie.

The virtual benchmark is designed to be extended with
additional test scenarios, which requires two steps to set up.
Firstly, the user must configure the world state by producing
a new roslaunch file to describe the objects and starting
location for the robot. Secondly, the user must add the scenario
logic to the virtual referee. This can be accomplished by
extending the existing referee with the start signal and end
logic, reusing the topics and services already in place.

The virtual benchmark does not rely on a particular robot or
software solution to be compatible. The only requirement is the
ROS interface, which is also true for the physical competition.
Currently the virtual benchmark is configured for the RALT
environment and Tiago robot. However, the roslaunch file
can be reconfigured to use another environment/robot and
reuse the virtual referee scenario logic freely. This means that
it is possible to test your solution across multiple competition
testbeds to assess generalisation capability [5].

IV. CONCLUSION AND FURTHER WORK

Implementing automatic scoring benchmarks provides a
potential tool for holding robotics competitions virtually.
They can also be applied to other similar competitions such
as RoboCup@Home. The tasks and functional benchmarks
provide obvious candidates for developing further scenarios,
but we can also create new situations to bridge the gap in
complexity between benchmark and task. Finally, incorpo-
rating elements of noise (e.g. human models active in the
environment) and uncertainty (e.g. sensor readings) can help
improve generalisability through making the virtual testbed
more similar to a real world environment.

Looking beyond COVID-19, virtual benchmarks provide
milestones and test cases for team’s systems, thus providing
a means for developers to test their system without physical
access. They can help improve the generalisation of a system
by making it easy to test across many virtual benchmarks.
Finally, we believe automation of the environment set up will
allow teams to spend more time focusing on their strategy,
ultimately leading to more innovative systems.

REFERENCES

[1] “Service robot simulator,” https://www.openrobotics.org/blog/2018/5/22/
service-robot-simulator, accessed: 2021-04-07.

[2] F. Pimentel and P. Aquino Junior, “Simulation system for learning of
social rules using gazebo and openai gym,” in III Brazilian Humanoid

Robot Workshop and IV Brazilian Workshop on Service Robotics, 01
2020, pp. 79–83.

[3] N. Tsoi, M. Hussein, J. Espinoza, X. Ruiz, and M. Vázquez, “Sean:
Social environment for autonomous navigation,” in Proceedings of the 8th

International Conference on Human-Agent Interaction, 2020, pp. 281–
283.

[4] A. Eguchi, “Robocupjunior for promoting stem education, 21st century
skills, and technological advancement through robotics competition,”
Robotics and Autonomous Systems, vol. 75, pp. 692–699, 2016.

[5] “Isr testbed simulated environment,” https://github.com/socrob/mbot
simulation environments, accessed: 2021-04-07.

12



Visually-based Prediction of Artist’s Drawing
Chipp Jansen1

1
Dept of Engineering

King’s College London, UK
chipp.jansen@kcl.ac.uk

Elizabeth I Sklar1,2
2
Lincoln Institute for Agri-food Technology

University of Lincoln, UK
esklar@lincoln.ac.uk

Abstract—This paper describes recent work in the development
of a co-creative human-robot drawing system, which observes an
artist’s drawing process in real-time. Using the data gathered in
a recent pilot study, a series of models were trained in order
to recover the current state of the artist’s drawing behaviour
and pen attributes from a multi-camera multi-perspective set-
up, aligned to a “ground truth” dataset obtained from a drawing
tablet. Experiments, carried out with two computer vision models
based on a CNN architecture, form a baseline for future, more
sophisticated models.

Index Terms—human-robot collaboration, co-creative drawing,
computer vision, deep learning, sketch-based computing

I. INTRODUCTION

Visual artists enjoy a large economy of creative digital tools
to produce their work. However, as result of a recent study into
co-creative artistic workflows [1] , we have found a desire for
a more fluid transition between digital and analog media (e.g.
pen and ink on paper), as artists often use physical media
for initial idea exploration. Here, we investigate vision-based
methods to understand artists’ activity (e.g. are they currently
drawing or not?) and output (e.g. predicting the pen position
on the page) while drawing; and to understand which inputs
(e.g. camera positions) are most useful for this modelling.

II. BACKGROUND

Computer graphics and human-computer interaction have
a rich literature on sketch-based computing and interaction
via digital interfaces such as drawing tablets [2]. Neural
network approaches to model sketching, such as the sketch-rnn

model [3] (and the availability of large-scale drawn datasets,
e.g. QuickDraw! [4]) have inspired many co-creative drawing
systems [5]–[7]. Some of these co-creative systems respond
to artists working with analog media and capture the drawing
process for reflective post-processing [8], [9]. However, none
of these systems build a real-time model of what the artist is
currently drawing or their behaviour. In addition, artists and
illustrators still use physical media as part of their workflow
and desire a more fluid way of capturing their drawings [10],
a feature which is currently lacking.

III. MODELS AND EXPERIMENTS

a) Set-up: We have developed a research prototype
comprising multiple cameras that observe an artist’s drawing

Research is supported through an EPSRC DTP Studentship ”Collaborative
Drawing Systems”, Grant Reference EP/N509498/1

surface: 3 RGB cameras (overhead, oblique right and left), 1
front facing depth camera (with RGB and infrared cameras
integrating into a depth image). The artist draws on paper on
top of a drawing tablet which records the position (x and y
coordinates) and pressure of the drawing pen [11]

b) Data: In early 2020, we conducted a drawing data
gathering study involving 13 professional and student illustra-
tors who were prompted to engage in two drawing exercises:
(i) observational drawing of a still-life; and (ii) drawing
from imagination or memory. Here we utilise data from both
drawing exercises for 5 participants, independently, to produce
two types of datasets with corresponding models: activity and
pen position. The examples in each dataset are comprised of
6 temporally correlated images1, which are resized to a fixed
resolution (80⇥60 pixels) and labelled using the corresponding
drawing tablet data as ground truth.

The activity dataset examples are labeled with a 3-class
pen state variable (“drawing”, “hovering”, “away”) and two
binary classes is drawing and is present based on the pen
state. Each activity dataset had 2500 examples sampled at even
intervals (200ms). The pen state dataset had 3500 examples
sampled only when the artist was drawing and are labeled with
the normalised pen position: (x, y) = ([0, 1], [0, 1]).

c) Models: Each model takes 6 camera images as input
(from individual sources or in combination). Each image is
fed independently through a sequence of Convolutional Neural

Network (CNN) layers, to be concatenated in a single layer that
fully connected to output variables. There are three flavours of
the activity model based on the variables: pen state, is present

and is drawing. The drawing model produces normalised pen
position (as above). Models were built and trained using
Tensorflow

2, with an 80/20 training/validation split on the
datasets, using an ADAM optimiser with a learning rate of
0.01, for 30 epochs each.

d) Experiments: We experimented with 7 different com-
binations of input images (single individual image input and
all images), on the three flavours of activity models and
the pen state model. Each model was trained and evaluated
independently with a corresponding user-session dataset.

14 RGB images for each camera, the infrared and depth image from the
depth camera

2https://www.tensorflow.org/
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IV. RESULTS AND DISCUSSION

Figure 1 shows the results for the three flavours of the
pen state model, broken down by the different input im-
age combinations, between which there are little differences.
Overall, the predicting the is present variable is the most
accurate (mean 93.5%, std 2.9%, n=70), followed by the
predicting the is drawing variable (mean 73.3%, std 5.8%,
n=70) and the ternary pen state activity variable (mean 68.2%,
std 6.9%, n=70). This suggests that the models are better
able to predict whether the artist is present than drawing.
This makes sense when one considers how visually close the
drawing and hovering state are, and that the pen tip is often
visually occluded from the image view.
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Fig. 1. Accuracy of activity models (L-R) pen state (ternary), is drawing

(binary), is present (binary). Each error bar summarises 10 drawing sessions
for the input images: (T)op, (L)eft, (R)ight, (F)ront (with (d)epth and
(i)nfrared component), (All) six images combined as input.

Figure 2 shows the mean squared error (MSE) for the x
and the y component of the pen position model. Overall,
the MSE for x (mean 0.0022, std 0.0064, n=70) was lower
than y (mean 0.0032, std 0.0078, n=70). The combined MSE
(mean 0.0054, std 0.0137, n=70), the model’s training metric,
was highest. There seems to be little difference amongst the
RGB cameras (T, L, R, and F), while the individual depth
(d) performs worse, and the individual infrared (i) has an out-
sized comparative variance. However, the combined images
(All) yield a far better result than the individuals.

V. SUMMARY AND FUTURE WORK

We have shown that using a CNN architecture with camera
images we can (1) predict activity and pen position across
different artists and; (2) predict using all input sources and
pairs of input sources. For predicting pen position, the com-
bination of images performed better than individuals, where
(surprisingly) they did not for predicting activity.

One limitation here is that each model is trained specifically
for a user and drawing exercise. The rationale here would
be that a co-creative system would train a model specific to
an artist, and perhaps starting from a more general model.
However, there are opportunities for future work in training
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Fig. 2. Mean Squared Error (MSE) (log scale) pen position models (L-R):
x, y and combined x + y, Each error bar summarises 10 drawing sessions
for the input images (same as Figure 1).

a generalised model as well as for transfer learning – how
does one artist’s model fair when evaluated on another artist’s
model? Or, how do models trained on observational drawing
differ than that of the same artist drawing from imagination?

Further work in investigating advantages of different com-
binations of inputs are possible and would be more broadly
applicable toward the human-robotic interaction research com-
munity, when considering the best view of a mobile camera for
a robot when observing detailed human work, such as drawing,
medical surgery or small electronics assembly.

In our work of human-robotic collaboration, our aim is for
these models to contribute towards a framework for a co-
creative drawing system, which is aware of the activity of
the artist and what they are drawing based on visual input.
Such a framework would benefit the co-creative computation
community, and provide a basis to evaluate different co-
creative approaches within the same context.
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Abstract—This paper describes the design and simulation
verification of a multimodal locomotion system on a myriapod
robot which is able to walk on uneven terrain and roll on flat
ground. The proposed design aimed to reduce actuation while
maintaining power efficiency on both flat and uneven terrain. A
mathematical approach was utilised to determine key parameters.
A simulation study was conducted to verify the kinematics and
dynamics of the system, modelling the locomotion of the robot
while walking and during its transformation to rolling on flat
ground.

Index Terms—multimodal locomotion, myriapod robot, legged
locomotion, transforming robot

I. INTRODUCTION

Multi-terrain mobile robots have increased utility when
compared to traditional dedicated mobile robots [1]. However,
multi-terrain robots often require complex locomotion systems
with a large number of actuators, which puts constraints
on size, weight, efficiency and cost. Wheeled locomotion is
effective on flat terrain but struggles on uneven terrain. Legged
locomotion is suited to uneven terrain but requires an increased
complexity for coordinated control [2]. Myriapod robots are a
form of legged locomotion based on centipedes and millipedes
which have demonstrated the capacity for reduced actuation
due to flexible body couplings, which allow passive adaption
to the ground profile [3]. The large number of legs ensures sta-
bility without the need for complex control systems. However,
myriapod systems are slow on flat terrain which makes them
unsuitable for applications within buildings, homes and ware-
houses. Previous complex legged robots such as [4] have been
able to increase their velocity on flat terrain by transforming
to a wheel form, which is propelled forward by “spare” legs.
The proposed design utilises this approach while maintaining
the simplicity offered by a myriapod platform, utilising only
2 motors for transformation and forward locomotion both in
legged form and wheeled form.

II. KINEMATICS DESIGN

The Myriapod robot walks in a millipede form on uneven
terrain and transforms to a wheel on flat terrain. A central
drive shaft runs down the body of the millipede, powered by
a single motor. Worm gears on the drive shaft transfer torque
to the legs via a spur gear on the leg axle. The drive shaft
is split into sections connected by universal-joints (U-joints),

Fig. 1: Partial physical prototype of the proposed myriapod.

TABLE I: Key form parameters. n=16 is the number of leg
sets, c=2 is the number of legs sets contacting the ground,
d=0.072 m is the distance between adjacent leg roots and
s=0.01 m is safety margin distance between leg tips

Parameter Derived Equation Value

Maximum body section off-
set angle (Qmax) in degrees Qmax = 360

⇡
22.50�

Phase angle delay between
adjacent legs (✓) in degrees ✓ = c ·

� 360
n

�
56.25�

Vertical length of the leg (R)
in meters

R = d�s

(2 sin ✓
2 )

⇣
2�cos Qmax

2

⌘ 0.06 m

Length of the whole robot
(L) in meters L = n · d 1.15 m

Wheel form diameter (Dw)
in meters Dw = L

⇡
0.37 m

allowing an offset angle between drive shaft sections which
is limited by the geometry of the body casings, see Fig. 1.
A cable runs through each body section and is attached to
a second motor. When the cable is wound in it pulls the
body into the wheel form, consecutive body cases fit into one
another, securing their position. When the robot is in wheel
form the legs continue to rotate propelling it forward. The
legs on either side of each body sections are in phase with
one another. Consecutive leg pairs are out of phase with one
another by an acute phase angle. This is a metachronal walking
gait which is used by millipedes [5]. In walking form this gait
results in a vertical undulation of the body.

The parameters seen in Table I, were necessary to size the
robot. The speed of the walking gait is characterised by [6] as

Vm =
2R sin ✓

2

tg
(1)

where Vm is the velocity of the walking millipede in the
direction of travel, calculated to be 0.058 m/s and tg is the
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Fig. 2: The myriapod robot walking in millipede form1.

time the leg is in contact with the ground in seconds. See
Table 1 for R and ✓.

III. SIMULATION

A motion study was conducted to validate the design and
to evaluate whether rolling increased velocity on flat terrain.

A. Simulation Setup
Webots™ from Cyberbotics Ltd was used to produce 2 sim-

ulations, one modelling the walking in millipede form Fig. 2
and one modelling its transformation from millipede to wheel
form and rolling locomotion Fig. 3. Limits on computation
power meant modelling simplifications were necessary. Leg
rotation was modelled with a motor powering each leg set.
This neglects the variation of shaft angular velocity resulting
from the use of consecutive U-joints. The robot was modelled
travelling forward on a flat arena, as a result there were no
forces acting which would cause lateral movement. Therefore
U-joints were modelled as hinge joints only allowing vertical
rotation. Lateral movement of the robot would indicate simu-
lation errors. The transformation was achieved by modelling
motors at these hinges. The control code for the transformation
activated these motors consecutively to replicate the behaviour
of a cable wound from one end by a motor.

B. Results
The position of the 8th body section was tracked in the x,

y and z direction over a period of 35 seconds. The direction
of travel is positive x, the positive y direction is the vertically
upward and z is the lateral direction. In millipede form the
locomotion behaved as expected, the average velocity in the
direction of travel was 0.067 m/s. During the transformation
to rolling simulation there are 4 main phases of movement in
the recorded data see Fig. 4a. Phase 1 is the transformation
period, seen in Fig. 3 with a duration of 4 seconds. Phase
2 is stable forward rolling, ending at 10 seconds. Phase 3 is
rocking, a period of forward and backward rolling, causing
the anomaly on Fig. 4b. Phase 3 was caused by the leg
rotation which propels the roll, becoming out of phase with
the rolling cycle. A protruding leg halts rotation and causing
a backwards roll. Uncoordinated rocking continues until the
wheel reaches a stationary position at 25 seconds and the
legs begin propelling it forward again. Phase 4 is another
period of stable forward rolling. The stable rolling speed was
approximately 0.35 m/s this was 5.22 times faster than the
walking speed of 0.067 m/s. The overall speed during the 35
seconds was 0.19 m/s. During the transformation to rolling
simulation there was an unexpected displacement in the z
direction, indicating computational errors in the simulation.

1Video of Fig. 2 and Fig. 3 is available at https://youtu.be/TCx6ydXqHts/

(a) 1 s (b) 2 s

(c) 3 s (d) 4 s

Fig. 3: The myriapod robot transforming from (a) (b), (c) to
(d) rolling.

(a) Displacements in x, y, z w.r.t
time.

(b) Forward displacement w.r.t
vertical displacement.

Fig. 4: Displacements of the myriapod robot’s 8th body section
from transforming to wheel form to forward rolling.

IV. CONCLUSION

A transforming myriapod robot has been designed with
increased efficiency on flat terrain while maintaining mini-
mally actuated systems. Simulations confirmed that rolling did
increase the velocity of locomotion on flat terrain. However,
the leg frequency is not currently optimised for continuous
propelled rolling. To achieve this, it is necessary to determine
the ideal relationship between the walking gait frequency of
the millipede and the rolling cycle of the wheel form. The sim-
ulation validated the locomotion style not the transformation
system. The modelling simplifications mean the simulation
velocities are likely an overestimation.
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Development of a Teleoperative Quadrupedal Manipulator
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Abstract—This paper outlines the design and operation of a
teleoperated quadrupedal robot enhanced with a manipulator
arm and gripper. Using the mobile quadruped platform Laikago,
a ViperX 300 robot arm and a wearable inertia based motion
capture system, a low-cost robot was assembled capable of
hybrid robot and manipulator control to allow seamless and
intuitive human to robot interface. Vision for the user is provided
through a 3D camera mounted at the front and a stereo camera
mounted on the robot arm end-effector. The robot is fully
controllable using a wearable inertial based motion capture
suit. To verify the functionality of the whole system prior to
testing on the real robot, physical simulations were conducted
and successfully demonstrated the capabilities of the proposed
teleoperation framework.

Index Terms—quadruped robot, manipulator, legged robot,
teleoperation

I. INTRODUCTION

Teleoperation has been an important aspect of robotics as
it allows for tasks that require the accuracy of a human
operator to be completed whilst forgoing the need of having
the operator be physically present. The benefits of teleoperated
robotics extends to tasks that are also too dangerous for
humans to be present as well as for tasks that are located
in impossible or difficult to reach environments.

The extent of legged robot teleoperation has typically con-
sisted of a simple joystick, however, when a legged robot
must complete complex manipulation tasks, there lacks an
intuitive control method able of allowing a difficult task to be
completed in a short time frame with minimal errors. Existing
legged robots such as the ANYmal have demonstrated that it is
possible to combine a robotic arm and a quadruped platform to
perform simple manipulation tasks [1]. However, performing
these tasks requires the operator to switch between controlling
either the quadruped robot or the arm, which would result in
difficulty when dealing with complex situations. A method
of overcoming this issue has recently been shown using the
Boston Dynamics Spot and dynamic grasping [2]. This method
however cannot be used for complex or delicate tasks that
require teleoperation due to the degree of automation used.

A solution to this is to adopt a different control method
that allows for a wider range of human input. A method
that has been explored is the use of Inertial Measurement
Unit (IMU) motion capture to control robots. Several insights
have shown that it is possible for both the high and low
level control of a robot to be generated through the use
of various IMU embedded devices to a high enough degree
of accuracy required for manipulation. One example is the
use of a wearable inertia based motion capture system to

Authors are with the School of Mechanical Engineering, University of
Leeds, Leeds, UK. {ll14c4p, el17m3m, r.c.richardson,
c.x.zhou}@leeds.ac.uk

Fig. 1. The developed teleoperative system consists of a wearable inertial
motion capture suit (left) and a quadrupedal manipulator (right).

control the high-level walking motion of a bipedal robot where
the commands stemmed from the feet positions [3]. Another
example is the use of gesture controls from hand and arm
mounted IMUs to control the high-level motions of a wheeled
robot [4]. Through the use of an arm-mounted IMU-embedded
device, a 7 Degree of Freedom (DoF) robot was reliably
teleoperated [5]. The use of teleoperation and the accuracy
and robustness of a wearable inertia based motion capture
system is demonstrated thoroughly through the development
of a dementia-care robot [6]

As illustrated in Fig. 1, the developed teleoperative system
is composed of the wearable inertia based motion capture
system which is worn by the operator and the quadrupedal
manipulator, of which is composed of the ViperX 300 robotic
arm and the Laikago quadruped robot. The Laikago from
Unitree is a small, low-cost quadrupedal robot capable of
locomotion via a single trotting gait. The ViperX 300 is a light-
weight 5 DoF robotic arm. The need for a higher DoF robot
arm was alleviated due to the extra DoF gained by the legged
mobile platform. There were no visual sensors mounted on the
original Laikago or robot arm. In this paper, the control system
allowing the wearable inertia based motion capture system to
communicate with the teleoperative system will be outlined
along with the simulation test results. The fully developed
system will allow the operator to control both the quadruped
robot and the manipulator simultaneously.

II. HARDWARE OVERVIEW

A. Hardware Design

The main goal was to minimise the extra load caused by
mounting the arm on the Laikago to ensure locomotion is as
stable as possible and also to provide enough sensory data to
make operation easier. To make the robot arm more suitable
for mounting onto the Laikago, the base was redesigned to
be more compact and the aluminium box-section lengths of
the arm were replaced with carbon fibre rods. These changes
reduced the overall weight of the arm from 4.1 kg to 2.6
kg. The Laikago possesses two parallel carbon fibre rods as
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Fig. 2. Labelled exploded view (left) of the redesigned and additional parts
assembly, and (right) whole robot arm assembly.

mounting locations where two 3D-printed parts could fix the
robot arm and the 3D camera to the Laikago. A 3D camera is
mounted on the front of the Laikago, on top of the onboard
computer, allowing the user to have a wide field of vision
when teleoperating the robot. A stereo camera is mounted on
the modified wrist link of the end-effector. The 3D camera will
allow the teleoperator to assess the surroundings of the robot
and allow for safer locomotion without the need of moving the
robot arm to gain visual feedback. The stereo camera output
will allow for manipulation tasks which require a greater
degree of accuracy to be performed, such as cutting wires or
carrying liquids. A labelled diagram of each redesigned part
and mounting system along with a rendered full assembly of
the robotic arm is illustrated in Fig. 2.

B. Teleoperation Control System

The human body motion is captured by a wearable motion
capture system, Perception Neuron, which provides stable
and accurate human body segments pose estimations. The
accompanied SDK could read whole skeleton data including
fine finger movements and broadcast to ROS through rosserial

protocol. Since the human master and the robot are kinemat-
ically dissimilar, therefore, directly connecting them at joint
levels is not feasible. Relative scaled pose is then connected
between the human hand and the robot gripper, where at time
t, their relation is described as

xt
sd = x0

sd + µ(xt
m � x0

m), (1)

where x = [x, z, ✓yaw] are the (x) sagittal and (z) vertical
displacements and (✓yaw) rotation about the vertical axis,
subscripts “m” refers to the master, “s” to the slave, and “d”
to a desired value. Superscript “0” refers to the initial timing
where both end effectors are connected. We use the VR gloves’
readings to detect the hands’ closures as the trigger to move
the robot. Specifically, the left glove’s closure triggers the left
hand movements for controlling the legged mobile base, and
the right glove’s closure connects the master’s right hand to
the gripper. µ is used to scale the motions between the master
and the robot. Note that the orientation is not scaled, thus
µyaw = 1.

III. SIMULATION

To validate the developed teleoperative robotic system, we
firstly performed simulation studies. A customized URDF was
created that combines both the Laikago and ViperX 300 mod-
els and loaded into PyBullet, the Python bindings of the widely
used physics simulation engine Bullet. With this environment,

Fig. 3. Teleoperation validated in simulation. (a) Sensed human model. (b)
Simulated quadrupedal manipulator. (c) Relative pose sent to the robot. (https:
//youtu.be/J8xHjMD8-vA/)

the feasibility of the control schemes and performance of
the robot could be accurately judged. The Laikago’s walking
pattern generation is adopted from a bipedal gait generator [7]
and the legged manipulator’s joint commands are solved using
a QP-based whole body controller [8].

As a proof of concept, the initial simulation was carried
out only for teleoperating the robot arm while the quadruped
was walking in place. The results are shown in Fig. 3. The
human master was moving only the right arm about the vertical
axis and along the front, vertical directions, respectively. The
relative pose from the motion capture data was sent to the robot
only during the master’s right hand was closed. This strategy is
quite intuitive and its successful enabling and disabling of the
robot arm’s motion can be seen from Fig. 3(c). We could also
observe that, though the human master endeavoured to move
every time along only one direction, there were inevitable
coupled motions sent to the robot. Extra effort is needed to
improve this for fine operations.

IV. CONCLUSION

A robot capable of seamless teleoperated movement and
manipulation with the use of a wearable inertial motion
capture device is presented. The hardware layout and design
of the overall robot was discussed along with modifications to
optimise the robot for teleoperation. The robot was thoroughly
tested in a simulation environment. The wearable inertia based
motion capture system was shown to be a robust method of
controlling the robot in a seamless fashion. The robot was
shown to be capable of performing teleoperated tasks from
within the simulated environment. Further work includes the
fully finished assembly of the robot in real life, along with
real life testing through various manipulation scenarios.
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Robot House Human Activity Recognition Dataset

Mohammad Hossein Bamorovat Abadi, Mohammad Reza Shahabian Alashti, Patrick Holthaus,
Catherine Menon, and Farshid Amirabdollahian

Abstract—Human activity recognition is one of the most

challenging tasks in computer vision. State-of-the art approaches

such as deep learning techniques thereby often rely on large

labelled datasets of human activities. However, currently avail-

able datasets are suboptimal for learning human activities in

companion robotics scenarios at home, for example, missing

crucial perspectives. With this as a consideration, we present

the University of Hertfordshire Robot House Human Activity

Recognition Dataset (RH-HAR-1). It contains RGB videos of a

human engaging in daily activities, taken from four different

cameras. Importantly, this dataset contains two non-standard

perspectives: a ceiling-mounted fisheye camera and a mobile

robot’s view. In the first instance, RH-HAR-1 covers five daily

activities with a total of more than 10,000 videos.

Index Terms—Human Activity Recognition, Dataset.

I. INTRODUCTION

In recent years, neural networks and machine learning
methods have been successfully adopted for many recognition
tasks in computer vision [1]. The nature of such algorithms
entails that they are dependent on a high number of labelled
samples depicting the relevant entity or situation. This means
they are most successful when used with large datasets that
are specific to the problem domain. The number of such
datasets is growing rapidly [2], leading to more accurate
human activity recognition models. However, most of these
datasets are gathered from YouTube or outdoor environments
and do not cover indoor everyday activities. As a direct
consequence, these existing datasets are not ideal for human
activity recognition (HAR) in the growing application domain
of companion robotics and home care technologies. There-
fore, we present a dataset that is suitable for human activity
recognition in companion robotics scenarios. In particular, we
aim to use the dataset to generate deep neural network models
that are able to either use a single perspective or a fusion of
multiple cameras to improve the accuracy of HAR.

II. RELATED WORK

HAR datasets can typically be characterised based on scene
properties, such as protagonist (individual or group), activity
(daily activities, sports, . . . ), environment (indoor or outdoor),
or situation (controlled or spontaneous) and camera properties,
such as data type (RGB or RGB-D), dynamics (static, moving),
perspective, etc. [1], [13]. In this section, we will review the
most popular RGB-based HAR video datasets and provide a
brief overview of their properties in Table I.

The first publicly available datasets that contain daily ac-
tivities are KTH [12] and Weizmann [11]. The low number of

All authors are with the School of Physics, Engineering, and Computer
Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
Corresponding author’s email: m.bamorovat@herts.ac.uk
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Fig. 1: Example activities of the dataset from all perspectives.

individual actions for each activity and the strictly controlled
environment with soft background from a single perspective
limit their utility in deep learning approaches. The UCF
datasets, e.g. UCF101 [8], by contrast, consist of videos that
are captured from various YouTube sources without control-
ling the environment. YouTube-8M [5], of similar nature, is the
largest HAR dataset so far with more than 8 Million videos
in 4716 activities. The number of classes and videos in both
datasets are versatile enough to be used for deep learning;
however, using YouTube videos means there is no fixed view
of the activities. INRIA XMAS [10] is the first HAR dataset
that contains multiple different viewpoints, including a top-
view camera in a controlled environment, while MuHAVi [9]
is a dataset containing 8 views with 17 classes of activities.
The controlled environment, lack of a dynamic perspective and
the low number of videos are shortcomings of INRIA XMAS in
our application domain. Likewise, the low number of actions
(238) and controlled environment are drawbacks of MuHAVi.
Charades [6] is a two-perspective dataset that includes 157
classes and 9,848 videos of daily indoor activities. Sports-

1M [7] is one of the largest datasets, with more than one
Million videos of 487 sports activities in a real-world environ-
ment that contains noisy backgrounds and a dynamic camera
perspective that follows a ball or a group of people. Moments

in Time [4] is another large recent dataset that includes more
than 1 Million three-second videos labelled in 339 classes.
HACS [3] is another new large HAR dataset with 1.5 Million
videos of 200 activities. In summary, the above HAR datasets
can not be adequately applied to the domain of companion
robotics for the following reasons:
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TABLE I: Overview of popular RGB-based HAR datasets and their properties.

Name Year Videos Activities Fixed Views Environment Situation Dynamics Perspective

HACS [3] 2019 1,550,000 200 - Indoor/Outdoor Uncontrolled Static Side
Moments in Time [4] 2019 1,000,000 339 - Indoor/Outdoor Uncontrolled Static Side

YouTube-8M [5] 2016 8,000,000 4,716 - Indoor/Outdoor Uncontrolled Static Side
Charades [6] 2016 9,848 157 2 Indoor/Outdoor Controlled Static Side

Sports-1M [7] 2014 1,133,158 487 - Indoor/Outdoor Uncontrolled Static/Moving Side
UCF101 [8] 2012 13,320 101 - Indoor/Outdoor Uncontrolled Static Side
MuHAVi [9] 2010 238 17 8 Indoor Controlled Static Side

INRIA XMAS [10] 2006 390 13 5 Indoor Controlled Static Side/Top
Weizmann [11] 2005 90 10 1 Outdoor Controlled Static Side

KTH [12] 2004 599 6 1 Outdoor Controlled Static Side

• Daily activities: Most of the datasets are captured in
mixed in-/outdoor scenarios or from random sources and
are therefore do not represent repetitions of specific hu-
man daily activities. There is only cone ontrolled dataset
of daily in-/outdoor activities.

• Dynamic perspective (robot view): In assistive robotics
scenarios (c.f. [14]), the robot viewpoint is a crucial
element. That is, the robot needs to have a good un-
derstanding of the situation and the activities a human
might be engaged in while focusing on the human with
its camera. With the exception of Sports-1M, which does
not contain any daily indoor activities, there are no other
datasets containing dynamic viewpoints.

• Redundancy: Companion robots may not be always en-
gaged in direct interaction with a human but may still
require information about the human’s current activity
to function efficiently (c.f. [14]). In these situations it
might be necessary to obtain this information from an
external camera. Of the above mentioned datasets, only
three consider multiple perspectives.

III. RH-HAR-1 DATASET

To address the specific requirements of HAR in the assistive
robotics domain and to overcome the drawbacks presented in
Section II, we are currently generating the first version of
the Robot House Human Activity Recognition dataset (RH-

HAR-1) at the University of Hertfordshire. It consists of
videos of a person in a home environment who is engaged
in daily activities at different times and in various situations.
Activities recorded so far are walking, drinking, sitting down,
standing up and reaching for an object, cf. Figure 1. The
dataset includes a dynamic perspective from a robot’s point of
view that is following the person plus a top-view perspective
using an omnidirectional ceiling camera. In total, the activities
are being recorded with four different RGB cameras from
the following perspectives: I. front (static) II. back (static)
III. ceiling (static, fish-eye), and IV. robot (dynamic). Each
scene lasts between two and four seconds and is recorded with
30 fps. The ceiling camera is recorded at 512×486 pixels, all
other cameras at 640×480. The resulting cut scenes are time-
synchronised and organised by class (activity), totalling more
than 10,000 short videos.

1Accessible at uhra.herts.ac.uk

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented RH-HAR-1, a dataset con-
taining video scenes of indoor daily activities. It makes use of
four different synchronised perspectives including a dynamic
one from a robot’s viewpoint and an overview from the ceiling
to address the specific challenges of activity recognition in
assistive robotics scenarios. Once completed, we will make the
dataset available on the University of Hertfordshire Research
Archive1. We plan to later extend the number of activities and
increase the variety of actions in each class to cover more
everyday situations and increase the dataset’s versatility.
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Abstract— Socially assistive robots (SARs) may have many 
benefits for older adults, including assisting in physical health 
interventions and reducing loneliness. However, the way in 
which they are perceived by older adults is unclear. This study 
aimed to understand some of these perceptions through semi-
structured interviews. These revealed that there is a current 
lack of knowledge about SARs, and limited acceptance of them 
in terms of having them in the home. Despite this, some potential 
advantages were identified, although some participants did not 
perceive a need for such new technology. Future research should 
identify new design strategies to address participants’ concerns 
and better match their needs. 

Keywords— Older adults, SAR acceptance, Barriers 

I. INTRODUCTION  
Socially assistive robots (SARs) are robotic technology 
platforms with audio, visual, and movement capabilities. 
Their purpose is to create friendly and effective interaction 
with a human user with the additional aim of giving 
assistance to the user and achieving measurable progress in 
their quality of life, often related to motivation, rehabilitation, 
or learning [1]. It is important to note that SARs are both 
platforms for interventions as well as interventions in and of 
themselves; they can learn and engage socially with 
individuals while also presenting interventions to users 
similar to mobile apps (e.g. skills training, health tracking). 
They can engage users across multiple sensory options, most 
often including sound, sight, and touch, which can create 
multiple modalities for the delivery of content or interactions, 
depending on user preferences or personal physical abilities 
[2]. Robot-led psychometric assessment could have many 
advantages, such as wider availability, test standardization 
and assessor neutrality, while providing higher engagement 
and usability to people with limited digital literacy [3]. 

Although research with SARs is still in its infancy, there have 
been positive participant responses to SARs assisting in 
physical health interventions related to increasing exercise 
with the elderly [4] and improved cardiac rehabilitation 
through self-reported usefulness of SARs to assist in the 
completion of rehabilitation tasks [5]. Social robots can 
provide a solution for the ageing population challenge, 
especially to reduce social isolation and loneliness [6]. These 
advanced systems could provide continuous support in a 
variety of daily activities, thus, enabling older people to live 
independently at home for longer. However, little is known 

about how older adults perceive SAR technology [7], or if 
they would be willing to accept the technology in their own 
homes.  As they are the target audience for many of these 
systems, it is important to understand whether older adults 
consider SAR technology to be beneficial for them, and what 
they would use SAR technology for. This study aimed to 
contribute to this understanding through semi-structured 
interviews.  

II. METHOD 
Data collection: Semi-structured interviews were conducted 
with 33 individuals, aged between 55-82 years (M=67.6 
years, SD=7.4), and consisting of men (n=15) and women 
(n=18), using online video call software (Facebook 
messenger, WhatsApp, Zoom, Microsoft Teams) depending 
on the participants choice. A semi-structured interview guide 
was developed. Participants were shown images of a human-
based and an animal-based design of SAR and asked broad 
questions to encourage discussion, including: “Which design 
is best and why?”, “How could these robots be useful to 
you?”, “What barriers (if any) may exists to introducing this 
technology into the homes of older adults?” 

Data analysis: Data was analysed using a realist thematic 
analysis approach [8]. We identified 4 key themes: existing 
knowledge of social robots, factors that influence acceptance 
of social robots, potential advantages, and potential barriers.  

III. RESULTS 
Existing Knowledge 

Overall, 55% of interview participants had some existing 
knowledge of SARs (Fig. 1), however, most explained that 
this was very limited and based on media coverage where 
they “might see a news item about something like this”. 

Influencing factors 

The design of the robot was one of the most influential 
factors, with 70% of participants stating they would have a 
human design and 33% accepting the animal design (Fig. 1). 
However, only 6% would have either design now (Fig. 1), 
with the rest stating that they would consider one in the 
future. The idea of “need” was highlighted as key influencing 
factor for this, for example, one person stated that "I’d have 
one if I felt I needed it or if it was a definite help”. 
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Several people stated that the animal design seemed “less 
intrusive”, “less intimidating” and “potentially more user 
friendly” than the human design. However, it was suggested 
that the animal design was less suitable due to the increased 
risk of falling, and that “having more things moving about 
just increases the risk of you falling”.  

Advantages 

Assistance with Activity of Daily Living (ADL) performance 
was the most frequently perceived advantage to having a 
SAR within the home, particularly in relation to household 
activities, or "simple chores”, for example, one participant 
stated that “I’m sure that in the house of the future, tasks that 
become onerous as you get older, washing up and basic 
tasks… and lifting and shifting things, you know… That may 
be a great help as you lose your musculature”  

Many people stated that it would be “nice just to have as a 
companion in the first instance. You know, somebody to talk 
to” because “if you're sat here on your own day in and day 
out, to have something like that, I should think, could save 
your sanity”, which highlights the importance of company as 
a potential advantage.  

Barriers 

One of the main barriers to social robot acceptance is a 
perceived lack of need for the technology, and the idea that 
social robots are a “novelty” that would “wear off very 
quickly”. For example, one participant stated that “From the 
novelty point of view, yes but erm I don’t see any real use for 
it”, with another echoing this idea, “I don’t see that having a 
robot there to talk to me is really going to help massively”  

Several people also raised the issue that people may become 
“over-reliant” on SARs, resulting in reduced movement and 
an increase in sedentary behaviour. This idea was 
summarized by one participant as “we might all become 
bone-idle and never do anything and you’d just atrophy” 
with another stating that “they might make you become lazy 
instead”. 

 
Figure 1) Previous knowledge and current acceptance of SAR 
technology among UK older adults 

IV. DISCUSSION 
This study aimed to understand older adults' perceptions of 
SARs. Many suggested that they would be willing to have a 
SAR in their own home if they felt they needed one and were 
able to identify some advantages of them; however only 6% 
would consider either design now. There are several potential 
reasons for this, one being the lack of existing knowledge, 
and therefore a potential lack of awareness surrounding the 
capability of SARs. For many participants, "company" was 
highlighted as a key advantage to SARs in the home, with 
many commenting that the animal-like design is, "less 
intrusive". However, humanoid robots include support for 
complex functionalities such as dexterous manipulation, 
advanced navigation and, moreover, a natural, more intuitive 
interface, which can overcome some of the difficulties 
currently experienced especially by the elderly, thanks to the 
multimodality of stimulation given by them. One of the key 
barriers was a perceived "lack of need", which may also 
highlight that people aren't aware of how physically helpful a 
SAR could be.  

Future designs of SAR should include an element of 
encouraging movement, especially if they are focused 
towards older adults who, as a group, are known to have high 
levels of sedentary behaviour. Several participants raised the 
issue of "over-reliance" as a barrier to them accepting a SAR 
into their home. Therefore, by ensuring that some form of 
activity is actively encouraged by the SAR, it is possible that 
they will become more accepted. Equally, a focus on 
reablement technology would be beneficial to help avoid the 
over-relance issue.  

Overall, this study shows that older adults perceive SARs to 
be potentially helpful, especially in relation to providing 
company for those living alone. Future work should look to 
highlight the potential benefits of SARs for older adults, 
especially to supporting physical tasks within daily life. This 
may be achieved with new participatory design strategies that 
involve the user from the beginning to create robots with 
customisable services that will better match the user 
requirements and needs. 
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Requirements for a home-based rehabilitation
device for hand and wrist therapy after stroke

Vignesh Velmurugan, Luke Wood, Farshid Amirabdollahian

Abstract—Recovering hand function to perform activities of
daily living (ADL), is a significant step for stroke survivors
experiencing paresis in their upper limb. A home-based, robot
mediated training approach for the hand allows the patient to
continue their training independently after discharge to maximise
recovery at the patient’s pace. Developing such a hand/wrist
training device that is comfortable to wear and easy to use is the
objective of this work. Using a user-centred design approach, the
first iteration of the design is based on the requirements derived
from the users and therapists, leading to a first prototype. The
prototype is then compared and evaluated against the required
features. This paper highlights the methodology used in the
process of validating the design against our initial brief.

Index Terms—Rehabilitation, hand, wrist, requirements, or-
thosis

I. INTRODUCTION

Motor function deficits in the upper limb are prevalent
in 80% of stroke survivors [1]. Normal hand function is
expected to perform Activities of Daily Living (ADL), and
hence its training alongside the proximal segments helps to
improve functional recovery [2].

Most conventional post-stroke rehabilitation takes place in
the form of a one to one session in a clinical environment.
In conditions like the ongoing pandemic, the patient must
be able to continue training without direct contact at their
own home. Robot-aided rehabilitation helps to achieve this
by allowing the user to train for a longer duration, several
times a day, without fatigue caused by travelling to and
from the clinic. Thus the user would be able to train at a
higher intensity which has shown to improve recovery of arm
function [3]. Remote supervision also increases productivity
and reduces the pressure on the health care system.

The objective of this research is to design a home-based
rehabilitation device for the hand and wrist that facilitates
active initiation and execution of movements. In this paper,
we discuss the different user requirements of such a device
and the methods of evaluation to verify that the prototype
iterations meets these requirements.

II. DESIGN METHODOLOGY

A cooperative approach involving users at every stage is
adopted in the design of this device. Firstly, a review of the
state of the art identified several contemporary works that

All authors are with the School of Physics, Engineering, and Computer
Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
Corresponding author’s email: v.velmurugan@herts.ac.uk

focus on post-stroke training of wrist and fingers such as
Gloreha [4], Hand of Hope [5], Saebo Flex [6], and SCRIPT
SPO [7]. In engaging with the potential users, the SCRIPT
researchers used methods such as focus groups and cultural
probes to develop persona based scenarios. These scenarios
helped to formulate a set of requirements that the potential
users expect in such devices. These requirements serve as the
basis for our first design iteration. The resulting prototype will
be subject to two formative and a summative evaluation phases
involving the potential users and therapists. Therefore, the user
is an active participant within the design cycles.

III. USER REQUIREMENTS

In the first phase of our design process, a review of the state
of the art involving task analysis, exclusion audit and studies
by the SCRIPT consortium helped to form a comprehensive
but non-exhaustive list of requirements. In this section, we
discuss these requirements and their methods of evaluation.

Fig. 1. Early prototype showing the device’s independence from changing
CoRs of the index finger during flexion and extension

A. Functional requirements

1) Adjustable functional assistance.
Patients with hemiparesis experience hyperflexion (in-
creased involuntary flexion) in their hand joints, often
leaving them with a closed fist and fully flexed wrist.
They require assistance with extension to overcome the
hyperflexion. The magnitude of assistive forces required,
depends on user’s motor deficit and varies with training
due to the underlying recovery. Based on therapists’
feedback, a maximum extension force and torque of
10N and 1.5Nm can be applied at the fingertips and
wrist respectively. Using the spring’s stiffness and joint
angle feedback, achieving this requirement can be veri-
fied using a force sensor as described in [8].

2) Range of motion for Activities of Daily Life.
The device should allow for training over the entire
range of motion (RoM) required to perform ADL as
established from the literature (Table. I).
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TABLE I
ROM TO PERFORM ADL

Wrist Fingers Thumb
MCP PIP DIP MCP PIP

Flexion 70° 90° 100° 80° 100° 80°
Extension 60° 0° 10° 0° 0° 10°
Abduction 20° 25° 50°
Adduction 30° 0° 0°

3) Does not hinder any of the natural range of motions
of the joints.
The device should not block any unas-
sisted(Abduction/Adduction) DoF required to perform
ADL (Table. I). This ensures that using the device does
not lead to muscle atrophy.
This and the previous requirement (No 2.) will be
evaluated by measurement of the joint angle using a
goniometer and a data glove.

4) Self-aligning centre of rotation (CoR).
The CoR of the joints varies with hand movement.
Misalignment between the CoR of the user’s joints and
those of the device would lead to the user’s discomfort.
Hence the device/orthosis needs to allow for alignment
with the hand’s CoR (Fig. 1). Our design eliminates this
concern using a flexible interaction element.

5) Measurement of finger and wrist motion.
Measurement of the flexion and extension angles of
the fingers and wrist is necessary for the user and
the therapists to monitor the training progress. These
measurements can also be used to control therapeutic
interactive games. These have been shown to improve
user’s motivation. SCRIPT researchers evaluated the
repeatability of their joint angle measurement using four
different standardised grip sizes. We aim to evaluate our
prototype using the same approach and a goniometer.

6) Accommodate different hand dimensions.
A device that is customised to the user’s hand-size
is preferred since a mismatch in dimensions leads to
discomfort and render it bio-mechanically inefficient.
Hence the design has to adapt to different hand dimen-
sions. A qualitative evaluation regarding any discomfort
while training, involving multiple users with different
hand sizes will be used to validate this.

7) Visual and tactile transparency
Wearable hand devices often block fingers’ tactile sens-
ing and restrict the visibility of the hand. The ability
to observe grasping and movement of the fingers and
wrist and feel the tactile features of the interacting object
adds to this sensory stimulation and neural modulation
potential. The functional element, achieving tactile and
visual feedback is considered within the design cycles,
while usability elements are subjectively evaluated.

B. Usability requirements
8) Ease of donning/doffing.

This is one of the most significant requirements of

all, since the users experience deficits in their motor
function. Therefore, the design should allow the user to
don/doff independently with ease.

9) Safe to use at home.
Given the absence of a clinician’s supervision, the device
should pose no risk of injury to the user and the family
members.

10) Smaller space requirement and increased mobility.
Based at home, the device should occupy less space to
ensure use-as-needed. Location flexibility could reduce
mental/emotional fatigue which in turn could lead to
longer training duration.

11) Require relatively less technical proficiency to oper-
ate.
Easy, infrequent and short procedures for setting up,
operating and troubleshooting helps with maintaining
the motivation levels of the user.

Given the subjective nature of these requirements (Nos 7-11), a
qualitative evaluation involving clinicians and stroke survivors
with Likert scale questionnaires will be used to study the
usability of the device. This requirement analysis showed the
significance of wearability and usability in user’s acceptance
and hence required a major part of our focus.

IV. CONCLUSION

A prototype has been developed according to the above
mentioned requirements and is ready to be evaluated against
them. The results of this formative evaluation will help to
update both the design and the underlying initial set of
requirements. The resulting second iteration of the prototype
will undergo further evaluation involving potential users, to
validate its functionality and usability.
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Abstract— To facilitate long-term engagement with social 
robots, robots can be modelled on ‘successful’ social animals – 
specifically, pet dogs.  Unfortunately, scientific understanding is 
limited to qualities of dogs that are ‘liked’, opposed to 
behaviours that facilitate and maintain the human-dog bond. To 
better understand dog behaviours that are important for 
building bonds between owner and pet, we collected open-ended 
responses from dog owners (n=153). Thematic analysis 
identified 7 behaviour categories: the importance of 1) 
attunement, 2) communication, 3) consistency and predict-
ability, 4) physical affection, 5) positivity and enthusiasm, 6) 
proximity, and 7) shared activities. We consider the feasibility 
of translating dog behaviours into a robotic platform, and 
potential barriers moving forward. In addition to providing 
insight into important behaviours for human-dog bonding, this 
work provides a springboard for those hoping to implement dog 
behaviours into animal-like agents, avatars, and robots. 

Keywords—dog behaviour, social robots, biomimetics, 
human-animal interaction, HRI, HAI 

I. INTRODUCTION 
Loneliness (defined as the subjective feeling that one 

lacks social support or companionship) is a public health 
issue growing in importance and urgency due to population 
ageing [1], social media influences, and most recently, 
pandemic-induced social isolation measures.  In an attempt to 
reduce loneliness and its many associated consequences (e.g., 
cardiovascular disease, depression, and suicidal thoughts) a 
range of technological solutions are being developed [1, 2]. It 
has been proposed that the ability of social robots to analyse 
and respond to aspects of human behaviour make them a 
candidate solution for addressing loneliness in some contexts 
[3]. To sidestep the complexities, expense, and high 
expectations associated with developing humanoid robots to 
take on these roles, robot developers are increasingly drawing 
inspiration from other ‘successful’ social animals [3,4].  

In western cultures, pet dogs can provide a source of 
comfort and companionship, and ownership can benefit a 
person’s mental health and wellbeing [5]. As a result, studying 
human-dog attachment, and implementing dog behaviours 
into robots, might help us create artificial systems that 
provide similar benefits [6]. It has further been suggested that 
by creating systems that resemble dogs, we could encourage 
greater acceptance of social robots - allowing users to reap 
the benefits of dog-ownership long-term [4, 7] while 
minimising the costs and risks of looking after living animals.  

Several studies have examined pet dog behaviours and 
their applicability to social robots [4-7], with a focus on 
qualities and behaviours which are ‘liked’ (e.g., smartness, 
friendliness, attentiveness). We argue that liked behaviours 

could be different to those which are important to bonding – 
such as how we might like, but not have a strong bond with, 
a household appliance. To gain clarity regarding this 
distinction, and to ensure future developments are grounded 
in a rich and informative evidence base, we asked dog owners 
which behaviours they perceived to be important to the bond 
they share with their dog.  

METHOD 

Participants 
In total, 283 individuals accessed the online study. After 

the removal of incomplete datasets and incorrect responses 
(n=130), 153 complete datasets remained. All participants 
were dog owners over the age of 18 years, and the majority 
identified as female (female: n= 123, male: n=4, non-binary: 
n=1). All study procedures were approved by the University 
of Glasgow College of Science & Engineering Ethics 
Committee (#300190287). Study procedure and sample size 
estimation (n=128) were pre-registered on the Open Science 
Framework: https://bit.ly/3dhdH9h. All data were 
anonymised and will be stored for 10 years, and then deleted.  

Procedure 
On the online survey platform (www.qualtrics.com) 

participants read an information sheet, provided virtual 
informed consent, and were given the option to provide an 
email address (entering them into a prize draw to win one of 
five £25 gift cards). Finally, after completing a series of 
questionnaires (out of the scope of this report), participants 
were asked to describe behaviours of their dog, according to 
the following instruction: “Please describe things that your 
dog does that you really like. Specifically, behaviours that 
you think are crucial to the bond you have with your dog.”  

Qualitative Data Analysis 
Data were analysed using Thematic Analysis using 

NVivo software (v.12), following a rigorous six-step method 
[8]. This is a widely used inductive method of qualitative 
analysis that involves familiarisation with the data, followed 
by classification of recurring ideas into codes. These codes 
are grouped into broader themes, which are then discussed by 
independent coders. In this study, two coders (one analysing 
the full dataset, and the other analysing a randomly selected 
subset [20%, n=31]) agreed on 7 data-driven themes. 

II. RESULTS 
The coders agreed on 7 key themes: the importance of 1) 
attunement, 2) communication (verbal and non-verbal), 3) 
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consistency & predictability, 4) physical affection, 5) 
positivity & enthusiasm, 6) proximity, & 7) shared activities.  

1. Attunement 
Numerous owners mentioned how their dogs alter their 

behaviour in response to the owner’s routine (n=17) or 
emotional state (n=37). E.g., the dog will display physical 
affection just prior to the owner waking or will provide 
physical affection when the owner is experiencing a low 
mood, appearing to pick up on their emotional cues.  

2. Communication 
Many owners (n=88) mentioned the importance of their 

dog expressing their needs to them. Accounts included 
examples of vocal behaviour and body language (e.g., 
through eye contact, by presenting toys, or through the use of 
nudging body parts or vocalisations). Additionally, owners 
stressed the importance of their dog consistently listening and 
responding to their voice commands or gestures. 

3. Consistency and Predictability 
The importance of consistency was a common report 

(n=68), specifically in terms of enthusiasm, positivity, 
obedience, and emotional awareness (e.g., consistently 
expressing joy on their owners return). Inconsistency was 
also reported as being desirable (n=20) – e.g., variability in 
play behaviour, and the dog expressing independence. 

4. Physical Touch 
Many owners (n=86) mentioned the importance of 

physical touch initiated by the dog – e.g., the dog resting a 
body part (e.g., head, paw, whole body) on the owner, or 
giving the owner “kisses”, “hugs”, and “cuddles”.  

5. Positivity and Enthusiasm 
Many owners (n=51) mentioned that when they arrive 

home, their dog approaches them at the door and expresses 
one (or a combination) of the following: erratic tail wagging, 
wiggling of their body, leaping into their arms, jumping up 
and around excitedly, or bringing a toy.  

6. Proximity  
Owners (n=18) mentioned the importance of their dog 

physically following them (e.g., from room to room), 
physically touching the owner whilst co-sleeping (n=48), and 
generally remaining in close proximity while at home or out 
on walks (n=18). The owners perceive this behaviour as 
resulting from love, loyalty, or the owner being a perceived 
source of nurturance or protection.  

7. Shared Activities 
Many owners (n=100) mentioned playing (e.g., games, 

training, general playful behaviours) and how the dog’s 
perceived enjoyment of activities was important for bonding. 
People also mentioned the importance of affection and 
‘checking in’ behaviours whilst walking together (n=43).   

III. DISCUSSION 
By using open-ended questions, we gathered rich detail about 
specific behaviours (7 core themes) perceived as important for 
the human-dog bond. While many of the behaviours could be 
implemented in a robot, significant gaps in our knowledge 
remain, which will result in barriers to implementation. 

Further exploration of these behaviours would be an important 
next step. For example, many participants expressed that 
“cuddling” is important, but they did not specify what 
“cuddling” consists of. To translate such behaviours into a 
robotic platform, we will need a fuller understanding of the 
individual components of the dog behaviour. Our online study 
design prevented us from asking follow-up questions, but 
future research can build on these findings. 

Future work could use video and motion capture technology 
to further classify dog behaviours and owner reactions. 
Incorporating rigorous qualitative methods could also 
facilitate insights regarding anthropomorphic attributions, and 
the role that individual preferences play. By conducting 
controlled mixed-methods experiments with robotic dogs, it 
should also be possible to manipulate the presentation of dog 
behaviours and determine desirable behavioural boundaries - 
e.g., in terms of intensity, frequency, or duration of behaviour.   

Conducting further research, to better understand how 
preferred dog behaviours can (or cannot) be successful 
modelled onto dog-like robotic systems, stands to greatly 
inform our understanding of the costs and benefits of dog-like 
social robots in psychosocial interventions.  

IV. CONCLUSION 
This study provides detailed insights into dog behaviours 
perceived as important for maintenance of the human-dog 
bond. We recommend that next steps focus on exploring the 
nuances of these behaviours, and testing the applicability and 
feasibility of programming such behaviours into dog-like 
robots. Exploring users’ reactions and engagement via 
quantitative and qualitative methods will be important 
evaluation strategies. 
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Human activity recognition in RoboCup@home:

Inspiration from online benchmarks

Mohamad Reza Shahabian Alashti, Mohammad Hossein Bamorovat Abadi, Patrick Holthaus,
Catherine Menon, and Farshid Amirabdollahian

Abstract—Human activity recognition is an important aspect

of many robotics applications. In this paper, we discuss how well

the RoboCup@home competition accounts for the importance

of such recognition algorithms. Using public benchmarks as an

inspiration, we propose to add a new task that specifically tests

the performance of human activity recognition in this league.

We suggest that human-robot interaction research in general can

benefit from the addition of such a task as RoboCup@home is

considered to accelerate, regulate, and consolidate the field.

Index Terms—Human activity recognition, robotics competi-

tions, benchmarks.

I. INTRODUCTION

It is likely that technological progress will soon result in
a greater prevalence of robots and intelligent systems within
human living and working environments. Robots are thereby
expected to assist people in their daily life, for example,
by helping with the housework or serving food. Many ap-
plications benefit from a sophisticated robot perception that
is able to detect human activities [1]. This entails learning,
recognition, and potentially prediction of human postures,
gestures, actions, and emotions in real-world scenarios. Our
work investigates the current role of human activity recog-
nition (HAR) in the RoboCup@Home competition [2] and
identifies a benefit of adding a task that emphasises benchmark
of HAR in human-robot interaction (HRI). We thus propose
to introduce a new task in RoboCup@Home that is inspired
by established activity recognition benchmarks.

II. ROBOCUP@HOME COMPETITION

RoboCup is a global project to advance progress in ar-
tificial intelligence and robotics. Besides its flagship league
RoboCupSoccer, it has established a number of other com-
petitions that are not related to football but evolve around
other robotics application domains. One of these competitions,
the RoboCup@Home league, is focusing on HRI in everyday
situations at home and in other indoor spaces to promote and
foster the development of service and assistive robotics [3].
Robots must autonomously solve a wide range of tasks to
support the human in their activities such as navigation in
unknown environments, people recognition, object picking and
placing, or verbal interaction. Prior to each year’s competition,
a predefined set of up around 20 tasks is designed by a
technical committee to evaluate the robot’s abilities. The exact
set varies and is published in the annual rulebook [2]. In this
paper we focus on those tasks that are related to HAR.

All authors are with the School of Physics, Engineering, and Computer
Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
Corresponding author’s email: m.r.shahabian@herts.ac.uk

TABLE I
OVERVIEW OF HAR TASKS IN ROBOCUP@HOME

Year Task Activity

2009

Who Is Who?
Enhanced Who Is Who?
Shopping Mall
Demo Challenge (In the bar)

Waving
Waving
Pointing
Waving

2010,
2011

Who Is Who?
Enhanced Who Is Who?
Shopping Mall

Waving
Waving
Pointing

2012 Who Is Who? Waving
2013 Emergency Situation Fire event

2014
Emergency Situation
Technical Challenge: People
Activity Detection

Fall over, waving
Standing, Sitting, Laying,
Confused, Happy, Bored

2015
Robo-Nurse
Wake me up test
Demo Challenge

Waving, fall, sit, walk
human awakening
Learning actions on-the-fly

2016 Navigation Test
Demo Challenge

Crowd
Learning actions on-the-fly

2017

Cocktail Party
Navigation Test
E2GPSR
Demo Challenge

Waving
Crowd
Describing a person
Learning actions on-the-fly

2018

Cocktail Party
Navigation Test
Person and Speech Recogni-
tion
E2GPSR
Tour guide
Demo Challenge

Rising and waving
Crowd
Crowd, waving, rising,
standing, siting, laying
describing a person
Waving
Learning actions on-the-fly

2019 Hand Me That
Stickler for the Rules

Pointing
Littering

2020 What is That? Nodding

A. Human Activity Recognition in RoboCup@Home

A glimpse at rulebooks1 of the 2009 to 2020 competitions
illustrates that most tasks are in HRI and object detection and
recognition, while only a small number of tasks test HAR-
related functions. Table I lists all tasks that include human
activities from every year’s rulebook from 2009 to 2020. With
the exception of 2014, in which the technical challenge was
explicitly dedicated to identify what people present and do,
there is no explicit identification of HAR tasks in this league
at all. More than half of of the tasks that contain any activity
recognition can be solved by recognising waving gesture as
a signal for the robot to continue its operation. Likewise,
pointing, nodding and rising were usually required only at
specific points in time and not as general function where
the robot would need to distinguish between different set of
activities during a longer period of interaction or observation.

1Online resource: robocupathome.org/rules
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Crowd identification and asking them to move away were
actions needed to accomplish the Navigation Test from 2016
to 2018. Some state-of-art recognition challenges, such as
describing a person and learning actions from demonstrations
have been introduced in the Enhanced Endurance General
Purpose Service Robot (E2GPSR) task and the Demo Chal-
lenge. In these two tasks, no team has yet achieved the maxi-
mum score. In 2017 and 2018, for example, none of the teams
attempted the Demo challenge and the highest achieved score
in E2GPSR these years was 70 out of 250 in the open platform
competition [4]. The recognition of individual, very specific
events like a dropping blanket, littering, or a fire hazard were a
part of some tasks. The detection of general human activities
such as falling, sitting, walking, lying, and awakening were
only essential in Emergency Situation (2014), Robo-Nurse
(2015), and Person and Speech Recognition (2018).

III. ACTIVITY RECOGNITION BENCHMARKS

A wide range of HAR benchmarks has been developed to
compare the performance of activity recognition algorithms
on standardised datasets. The recognition is thereby typically
vision- or sensor-based, or a combination of the two.

A. Sensor-based Benchmarks
The OPPORTUNITY challenge is an example for the use of

public benchmarks for sensor-based activity recognition [5]. A
wide range of locomotion models and gestures were collected
using onboard robot sensors, and environmental sensors. These
were classified by k-NN, NCC, LDA and QDA techniques
then evaluated using standard approaches such as Weighted
F-measure, Area under the ROC curve and Misalignment
measures. The HASC Challenge, orchestrated by Nagoya
University [6], is also similar and involves data collected from
a large number of subjects by 20 teams. The BSN Contest [7],
was a competitive benchmark based on body-attached sensors.
The BDA Challenges2, which aim to recognize daily physical
activity from phone sensors, are another example of HAR
competitions that aim to recognise six basic activities.

B. Vision-based Benchmarks
Although many research groups have prepared datasets, only

some of these are designed to evaluate the accuracy. Activi-
tyNet [8], for example, is an international challenge on activity
recognition that have been held since 2016 in conjunction
with the CVPR conference. It includes a diverse set of tasks
each emphasising a different aspects of activity recognition
to develop the visual perception of videos and natural human
language. Three challenges were based on ActivityNet’s own
dataset and some other tasks were based on other large-scale
activity and action datasets, including Kinetics, AVA, ActEV,
HACS, and ActivityNet Entities. The SPHERE challenge [9]
is another activity recognition competition in the context of
a smart environment utilising data including RGB-D, ac-
celerometer, and environment sensor. Two main challenges
are predicting posture and daily living activities with the aim

2Online competition: kaggle.com/c/bda-2020-physical-activity-recognition

of creating a reliable model to enhance physical well-being.
The VISUM challenge3 is third benchmark that uses the KTH
dataset with six type of human actions (walking, jogging,
running, boxing, hand clapping and hand waving).

IV. SUGGESTIONS FOR IMPROVING ROBOCUP@HOME

Inspired by these publicly available benchmarks, we propose
to include a new task in the competition that puts an exclusive
focus on general HAR to further advance activity recognition
in HRI and further acknowledge its importance in the field.
We suggest to add a task that accounts for both types of
HAR benchmarking, vision- and sensor-based. Ideally, the task
would combine the use of the robot’s integrated sensors and
sensors from a smart environment to facilitate a competition
within an interactive scenario. Motion detectors, door sensors,
wearables (e.g. smartwatches) or cameras could be used to
gather information about a person to recognise postures and
activities in different locations. Moreover, we propose a com-
plementing online simulation, which could alleviate hassles
and costs. The task could, for example, be set in an assistive
robotics scenarios where HAR plays a crucial role.

V. CONCLUSION

We reviewed tasks in RoboCup@Home and revealed that
activity recognition only plays a limited role within this com-
petition. We also provided an overview of activity recognition
benchmarks in home environments to use as an inspiration
to better account for the importance of HAR in HRI. With
this background, we proposed a task for RoboCup@Home that
focuses on HAR benchmarking. Using a combination of vision
and other sensors, this task will allow to evaluate activity
recognition during interaction to further advance HRI research.
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Affordable Robot Mapping using Omnidirectional Vision

Mohammad Hossein Bamorovat Abadi, Mohammad Reza Shahabian Alashti, Patrick Holthaus,
Catherine Menon, and Farshid Amirabdollahian

Abstract—Mapping is a fundamental requirement for robot

navigation. In this paper, we introduce a novel visual mapping

method that relies solely on a single omnidirectional camera.

We present a metric that allows us to generate a map from the

input image by using a visual Sonar approach. The combination

of the visual sonars with the robot’s odometry enables us to

determine a relation equation and subsequently generate a map

that is suitable for robot navigation. Results based on visual map

comparison indicate that our approach is comparable with the

established solutions based on RGB-D cameras or laser-based

sensors. We now embark on evaluating our accuracy against the

established methods.

Index Terms—Visual Sonar, Omnidirectional Vision, Visual

Mapping.

I. INTRODUCTION
Mobile robots require a navigation algorithm to move in

a goal-directed manner. A good understanding of the envi-
ronment is thereby key for a successful navigation. There are
many methods of obtaining this information, such as using
a variety and combination of sensors as input. Most popular
solutions include a laser range finder to generate highly accu-
rate maps for simultaneous localisation and mapping (SLAM),
cf. [1]. However, lasers that provide a high scanning rate often
cost more than £1,000 and are not always feasible. However,
lasers that provide a high scanning rate often cost more than
£1,000. There are other affordable solutions that use, for
example, RGB-D cameras to provide the navigation system
with input. However, these are usually limited in their field of
view due to the opening angle. Our approach, by contrast, uses
a single omnidirectional RGB camera capable for gathering
information about the entirety of the robot’s surroundings.
Our research further identifies a metric for generating a map
from the input image using a visual sonar approach to find
obstacles around the robot. Data from visual sonar sensors is
used to determine a metric distance between the robot and
these obstacles. These distances are then used to generate a
map that a robot can use for navigation.

II. PREVIOUS WORK

Our approach builds on top of existing work that uses
monocular vision instead of a laser sensor to find the obstacles
around a robot with the help of edge detection and so-called
visual sonars [2]. This approach has been modified to be used
with an omnidirectional vision system [3]. It has also been
extended to determine a free path by varying the number of
sonar beams to identify their ideal range and shape [4]. The
method can enable robot navigation when using an enhanced

All authors are with the School of Physics, Engineering, and Computer
Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
Corresponding author’s email: m.bamorovat@herts.ac.uk

(a) Visual Sonar Beam (b) Sobel Edge detection

Fig. 1: (a) Omnidirectional image with a visual sonar. (b)
Result of the edge detection and thresholding algorithm.

model that uses three individual sonars to the left, right, and
front of the image to detect obstacles and another one to
determine a free path simultaneously [5].

III. METHOD

One key characteristic of the previous approach is that it
is non-metric. In comparison, we present an omnidirectional
vision system for mobile robot navigation that generates a
metric map. Our method consists of two steps: (A) visual
preprocessing to find edges that represent obstacles and to
calculate the sonar beams and (B) a fitting step to relate the
pixel distance to real-world lengths.

A. Visual processing

First, a sobel operator is used to detect edges in the image.
We further apply a black and white threshold to remove noise
(cf. Fig. 1b). In parallel, we use an algorithm to identify
and mask surface reflections to prevent them from being
incorrectly identified as obstacles [4]. We then generate visual
sonar beams that measure distances to obstacles comparable
to normal sonar technology. Instead of using acoustic signals,
visual sonar works on the preprocessed image and results in
pixel-based distances [6]. That is, the beams originate at the
centre of the image and extend outwards until they reach
an edge. Figure 1a shows an example beam (blue) on an
omnidirectional image.

B. Sonar Fitting

In this section we present a novel method to calculate
the metric distance between robot and obstacles, taking into
account the pixel-based characteristics of visual sonar. Each
sonar beam forms a vector of visual sonar consisting of a
group of pixels. The length of this vector is the number of
pixels. For instance, the sonar between robot and the wall in
Figure 1a has a length of 158 pixels. This distance corresponds
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to a metric length, which can be identified using the robot’s
odometry, i.e. by moving the robot around between defined
places. A relationship can be found using a fitting method that
relates changes in the robot’s position to changes in the pixel
distance that originates from the visual sonar. Since all visual
sonars start from the centre of the omnidirectional image, a
single sonar sensor can be considered alone to identify this
relationship, which can then be used for the other sensors. A
dense calibration is necessary to find the correlation function
d between the sonar pixels and their real-world distance. We
have designed a routine that begins with the robot placed
sufficiently close to a wall so that the sonar vector’s first pixel
can be detected. The robot is then moved back. Information is
gathered from the odometry to obtain a real-world distance and
from the visual sensor for a change in pixel distance. We then
use the fitting method above to determine the metric distance
from the visual sensor, obtaining from this fitting method an
equation that takes pixel input and outputs the metric distance.

IV. EVALUATION

We replaced the RGB-D sensor of a TurtleBot2e1 with an
RGB camera-based solution (<£50) to evaluate our approach
under realistic circumstances, cf. [4]. We also mounted a
rotating DS-01 laser (£150) as a high-precision alternative to
compare the mapping results. Our experiments, all of which
were performed at University of Hertfordshire’s Robot House,
consisted of two parts: calibration and mapping.

A. Calibration

A successful calibration is the prerequisite for applying
our approach to a robot’s navigation system. We, therefore,
performed a series of tests moving the robot backwards at
different speeds. Each of these tests has been repeated 10
times to gather odometry data and sonar pixel lengths. Results
indicate that the most reliable data is obtained from a calibra-
tion with a slowly moving robot (velocity: 0.0 angular, �.05
linear) without any obstacles in front. Moreover, a straight
robot movement with minimal deviations from its path led
to optimal results. Figure 2 shows the result of fitting of a
polynomial using one of the most reliable calibration routines.
The function d(x) describes the relation between the distance
d in cm and the visual sonar length x in pixels:

d(x) = (0.0125 ⇤ x7) + (0.0552 ⇤ x6) + (0.0533 ⇤ x5)

�(0.0910 ⇤ x4)� (0.1683 ⇤ x3) + (0.0784 ⇤ x2)

+(0.4732 ⇤ x) + 0.5147

B. Mapping

With the function d and the visual sonar, we can calculate
metric distances that can be used in mapping. Figure 3 shows
a map that has been generated using SLAM2 to use our visual
sonar approach. As a comparison, red colour indicates the
mapping of the same area that has been recorded with the
high-precision laser. The visual sonar method has generated a

1A platform specification can be found at turtlebot.com/turtlebot2
2We used the standard ROS gmapping suite from wiki.ros.org/gmapping
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Fig. 2: Calibration and polynomial odometry fitting d

Fig. 3: Mapping result with laser comparison in red

map that is not as precise as the one generated with a laser and
contains some artifacts but it is suitable for navigation tasks
as we were able to successfully use it for driving the robot.

V. CONCLUSION

We have presented a novel method for calculating the metric
distance between a robot and obstacles based on a visual
sonars. It correlates pixels from an omnidirectional image and
the robot’s odometry by fitting a function that determines
the relationship between the sonar’s length in pixels and a
real-world distance. We have demonstrated that this method
produces comparable results visually. For future work, we aim
to revise the edge detection algorithm and plan to integrate
regression learning to further improve results. Moreover, we
plan a study to compare the approach’s performance to other
methods and technologies, such as RGB-D cameras and laser
sensors and to calculate their precision and computation time.
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Abstract— The sale of service robots for personal and 
domestic is expected to rapidly increase in coming years. 
Growing concerns are raised towards the lack of clarity towards 
ethical and security safeguards within Data Protection 
Regulation for these products, particularly relating to privacy. 
With domestic robots having access to once historically 
protected spaces, it is imperative that legal rules keep up with 
technological advancements and the issues they pose to 
individuals and their rights. Respectively, this paper calls for 
stronger privacy protections to promote and encourage the 
development of ethical domestic robots. 

Keywords— Privacy, Data Protection, Safeguards, Artificial 
Intelligence, Robotics 

I. INTRODUCTION 
Artificial Intelligence (AI) and robotics is an ever-growing 

field in modern history, with the Internet of Things (IoT) 
offering additional support for better domestic robots [1].  
Robots are equipped with the ability to sense, process and act. 
Particularly for domestic robots, that have access to 
individual’s private homes, the risks to privacy have raised 
concern [2]. As stated by Calo, the potential to compromise 
devices in the home is not a new problem, but the difference 
with robotics is the ability to move and manipulate, as well as 
record and relay information [3].    

To begin, this paper aims to assess the implications to 
privacy in reflection of the progression of domestic robots 
through use of conceptual research, to identify how privacy 
protections could be strengthened. In review of the General 
Data Protection Regulation (GDPR) [4], this paper aims to 
contribute by providing recommendations for a future 
framework for AI and robotics, including domestic robots, to 
ensure not only accountability to developers, but also the 
strongest of protections to individual’s and their rights. 

 The recommendations proposed in this paper should be 
viewed in light of some limitations, however, though use of a 
combined doctrinal and research-based methodology, the data 
discussed is consistent, reliable and precise. The suggestions 
intend to be considered as fundamental research, with the 
intention of reducing privacy concerns through the drawing 
together of ideas and research from different disciplines.  

II. THE DEVELOPMENT OF DOMESTIC ROBOTS 
Already, domestic robots that manage household chores, 

provide social company, entertainment and education are 
successful in the consumer market, and are viewed to soon be 
a commonplace in individual’s homes.  

A. iRobot’s Roomba 
The iRobot’s series of Roomba autonomously vacuums 

and mops floors, using AI to create floorplans of the house, 
and mapping efficient routes for future use [5]. Companion 

and domestic Robots which are capable of connecting to the 
IoT within the home creates the possibility of unprecedented 
access to individual houses by law enforcement, civil litigants 
and hackers [3], or through sales to third parties [6]. 

B. Amazon’s Ring ‘Always Home’ Cam 

In 2020, Amazon’s company Ring unveiled an 
autonomous indoor security camera, which has the ability to 
fly through chosen, personalised paths of the user’s house 
which is streamed to the user’s app [7]. Although Ring claim 
the new product was designed at privacy in the forefront, it is 
currently vague to what extent Ring, or Amazon themselves 
will have access to the data, and what purposes it will be 
used for, raising serious privacy concerns.  

C. Companion Robots 
Companion robots raise specific concerns due to the high 

level of interaction with their users, particularly those that are 
designed to collect human-centered data such as biometric 
data and respond to user’s physical needs and emotions 
through the use of AI algorithms [8]. It is imperative that the 
highest level of privacy protection exists not only at the 
forefront of the design stage for these robots, but also 
throughout their life-cycle.  

III. THE GENERAL DATA PROTECTION REGULATION 
The General Data Protection Regulation (GDPR) [4] was 

implemented in 2018 to strengthen protections to individual’s 
personal data. Personal data is defined in Article 4 of the 
GDPR [4] as any information that relates to an identifiable 
person, by reference to an identifier such as a name, location 
data, online identifier or other listed factors. The processing of 
special categories of data, which include biometric data, are 
given stronger protections under Article 9 of the GDPR [4]. 

It is clear that companion robots that process personal data 
would be subject to the GDPR safeguards. However, as stated 
by the ICO, data about a house will not, by itself, constitute 
personal data, unless that data can be linked to the relevant 
owner [9], which blurs the lines when considering domestic 
devices such as the previously discussed Roomba and Ring 
security camera as well as upcoming companion robots. It is 
also unclear whether inferences to individual users drawn 
from non-personal data are protected under the GDPR [10], 
further reflecting the lack of clarity in this area.  

It is essential that obligations are placed on those who 
deploy and develop robotics to ensure the strongest of privacy 
protections. With the rise of the IoT and AI and Robotics, it is 
inevitable that eventually, a specific framework addressing 
these challenges will be introduced. The White Paper on AI 
[11] makes an attempt at this, but has been heavily criticised 
for its lack of scope and minimal consideration for 
transparency [12]. To ensure AI and robotics are developed 
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and deployed consistently with ethical and human-centric 
approaches at the forefront, it is imperative that future 
legislation addresses these matters in depth. 

IV. RECOMMENDATIONS  
Stronger privacy protections and safeguards are 

particularly important in relation to domestic robots, which 
have unprecedented access to individual’s private homes, 
heightening privacy risks and implications. Although 
companies and organisations may claim their products and 
services satisfy privacy standards and that data protection is 
guaranteed, evidence in recent years arguably proves 
otherwise, particularly for the largest of companies, who 
prominently deploy and develop AI and robotic technology.  

 Amazon and Google were fined in 2020 for 
noncompliance with the GDPR by the French Data Protection 
Authority [13], and more specifically related to AI and 
robotics, privacy concerns were raised in 2018 when a US 
Judge demanded Amazon Echo recordings for evidence in a 
double murder investigation [14]. Again in 2020, a lawsuit 
was filed against Amazon’s company Ring, in which privacy 
and security concerns were raised by the Courts [15].  

This reflects that company and organisational guarantee to 
consumers is not enough, making it essential that future 
legislation efficiently enforces such companies to develop and 
design products with privacy and ethical implications at the 
forefront, to ensure the strongest protections to individuals and 
their rights, and to allow the benefits of these technological 
advancements reach their potential. 

A. Regular Updates 
Domestic robots in particular, that once bought are not 

within direct contact of developers, need to be subject to 
regular updates that are easily accessible to users and available 
to be installed remotely. An obligation for regular updates to 
be issued would ensure available products preserve and 
improve their abilities, whilst keeping the devices in 
compliance with standards ensuring that individuals and their 
rights remain sufficiently protected. To ensure updates are 
installed to products, a time requirement could also potentially 
be placed on users to ensure compliance.   

B. Awareness and Education 
There is a need to raise awareness and educate users on the 

implications of these products, and with possible requirements 
for transparency, in addition to sufficient redress methods for 
machine decisions, public trust and acceptance could increase, 
consequently increasing opportunities for AI and robotic 
developers. For domestic robots in particular, more awareness 
needs to be raised in relation to third-party use of data, and the 
associated risks and implications. This could be achieved 
through obligations, which could be placed on developers to 
inform and educate users before having access to their 
products, perhaps through a series of videos and related 
questions.   

C. Human Right and Data Protection Impact Assessments 
Under Article 35 of the GDPR [5], a Data Protection 

Impact Assessment (DPIA) must be completed where a type 
of processing, particularly using new technologies is used. 
This paper calls for a more thorough assessment including 
broader human right considerations, especially for domestic 
robots, and that such assessments and monitoring of products 
take place regularly throughout the system’s life cycle. 

V. CONCLUSION 
It is inevitable, given the rapid progression of AI and 

robotics that technological advancements will continue to 
grow, presenting new and additional challenges. It is 
imperative that future legislation ensures clear and sufficient 
safeguards to individuals, and  efficiently tackles the novel 
complexities of this technology. As discussed, privacy by-
design, regular updates, more thorough and regular 
assessments, and an increase to user awareness and education 
of products is essential to achieve a future of ethical domestic 
robots. 
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Abstract—Minimally-invasive robot-assisted surgery often uses

instruments that are pivoted about a trocar. For precise and

safe control, the instrument’s remote centre of motion (RCM) is

required to match the trocar insertion point. In cases where

there are free-moving body parts, such as the eye in vitreo-

retinal surgery, RCM and trocar locations can deviate, making

estimation techniques challenging. This work addresses this by

developing a hardware solution that can concurrently track the

RCM and trocar locations for vitreoretinal surgery tools. A

solution was developed that consisted of two miniature cameras,

an inertial measurement unit and tool-mounting brackets for the

Alcon surgical forceps. The system was designed and prototyped

using additive manufacturing. A bench setup was used to carry

out initial qualitative validation. On-going work will improve the

first prototype and then move towards developing a robust RCM

and trocar position estimation algorithm.

Index Terms—Robot-Assisted surgery, Vitreoretinal Surgery

I. INTRODUCTION

Vitreoretinal surgery consists of procedures carried out
within the interior of the eye and on the retina. To insert
the specialised surgical tools an incision has to be made in
the sclera. A trocar, which is an access port placed in the
incision, provides strain relief and prevents trauma around
the wound. Surgeons manoeuvre the surgical tools using the
trocar as a fulcrum without putting extraneous lateral forces
on it. Research is being conducted into instrumented hand-
held tools [1] and robot-assisted surgery [2], [3] to tackle
some of the challenges encountered during surgery such as
the manipulation of frail tissue like the retina without causing
permanent damage or hand tremors which makes it difficult
to handle tissue at a miniature scale. This will allow for the
delivery of new regenerative therapies to the minuscule layers
of the retina, which otherwise would be impossible to do
manually.

Surgical tool control requires accurate information on the
location of the remote centre of motion (RCM) and of the point
of insertion into the trocar. These locations are used to enable
pivoting around the trocar (when both points are aligned) and
to detect misalignment when eye rolling is not desired, as
in that case harmful lateral forces are being exerted on the
trocar’s walls that may lead to tissue damage, astigmatism
or lens tear. Current research [4], [5] either requires for the
manual setting of the trocar position or assumes that it is

This project has been funded by EPSRC Doctoral Training Partnership
allocation to King’s College London and an ERC Starting Grant [714562].

the same as the RCM. This is not always the case for freely
moving body parts, such as the eye, that deform due to body
movement or force exerted by the instruments. A method to
estimate and compare both the positions of the RCM and the
point of insertion into the trocar is needed.

This work aims to fulfil this requirement, specifically for
the use on co-manipulated vitreoretinal surgery robots with
passive wrists where the direction of the surgical tool is de-
coupled from its controlled axial joint rotation. Two miniature
cameras were mounted on the front of the tool to visually
locate the trocar position. An inertial measurement unit (IMU)
was mounted on the rear of the tool to capture its pose and
estimate the RCM. Having these two positions allows for their
comparison in real-time. Furthermore, this system will enable
the compilation of a comprehensive first of its kind dataset,
allowing for future research on topics including instrument
localisation or robot learning from surgeon movements in
vitreoretinal surgery.

The following article describes the design and prototyping
of the system, showcased in Fig.1 that will be used as a
platform for further research. The system was designed around
the Alcon surgical forceps, a popular tool used by surgeons
for vitreoretinal surgery.

II. ELECTRONIC SYSTEM DESIGN

The electronic system comprises of two miniature cameras
that connect to a PC, an IMU that relays its measurements
to a micro-controller using Serial Peripheral Interface (SPI),
which in turn is connected via serial link to the PC.

Two cameras were needed for depth perception, to provide
visual localisation of the trocar. The cameras had to be as small
as possible so as to not get in the way of the forceps being
handled. They also required a good enough resolution to locate
the trocar. For this reason the Enable Inc., minnieScope-XS
camera was chosen. It has a diameter of 1.4mm, a maximum
resolution of 1 Megapixel, is sterilisable and conforms to ISO
10993-1:2009 (general biocompatibility).

An IMU was chosen to capture the pose of the forceps.
These have a small footprint, are low-cost and can be placed
on the surgical instrument itself. Using other methods like
electromagnetic or optical tracking would not work for this
application as line of sight cannot be kept at all times and
they would require additional bulky equipment that would
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Fig. 1. Final design prototype assembled on the Alcon surgical forceps (top)
with the corresponding 3D-CAD design (bottom).

affect surgical workflow. A wired rather than a wireless IMU
was chosen due to the additional size and weight that a
battery and antenna would impose on the IMU compartment.
The SEN-13762 breakout board from Sparkfun, containing
an InvenSense MPU-9250 IMU, was chosen due to it being
of low-cost, incorporating a 3-axis magnetometer and having
good gyroscope noise performance.

The Texas Instruments EK-TM4C1294XL micro-controller
development board was chosen because the software library
to connect to the particular IMU was available and required
minimal modification. Its purpose was to relay to the PC the
pose measurements sent to it by the IMU.

III. MOUNTING SYSTEM DESIGN

Taking into consideration the ergonomics, weight distribu-
tion and feedback from our clinical collaborator, a 3D-CAD
model was created (Fig. 1). This consisted of two brackets,
one that would be mounted at the front of the forceps and the
other at the rear. The front bracket held the cameras by using
a rotating mechanism that locked in place when fully turned,
wedging the cameras in some grooves. The rear bracket held
the IMU compartment, which could slide onto the bracket
and lock in place, allowing the IMU to be covered in a
drape and be reused or replaced if damaged without having
to dispose of the entire prepared tool. The brackets would
be glued onto the forceps, being easy to complete in the 30
minutes preparation time before surgery, thus removing the
need to have a mounting mechanism. There are a number of
bio-compatible adhesives that could be used, for example the
Intertronics Opti-tec 5006 adhesive.

The design was 3D printed and assembled to ensure all
parts fitted properly (Fig. 1). To evaluate whether the camera
placement was adequate to capture enough of the eye for
the trocar position estimation algorithm, a surgery setup was
employed, consisting of the assembled brackets and camera on
the forceps, together with a Bioniko eye and face phantom. A
video was recorded using the mounted camera with the forceps
inserted into the trocar, whilst moving it the same way as
during surgery. From the video it was confirmed that there
was an adequate viewing angle, being able to see all of the
eye and the surrounding area of the face.

IV. IMU VERIFICATION TESTS

A verification test was performed to observe the behaviour
of the IMU rotation values, whilst in motion. The IMU was

strapped onto the handle of an Entact 7 DoF haptic device,
which would provide the ground truth values. Three 15-minute
tests were performed whilst the haptic device’s handle was
manually rotated. Results showed a very noisy signal with
errors ranging from 0� to 360�, this was caused by two
factors. Firstly, noise was injected into the signal by the cable
being constantly tugged when rotating the forceps. Secondly,
the IMU was strapped onto a metal handle connected to a
moving metal frame. The metal frame would keep intersecting
the magnetometer’s magnetic field causing disturbances in
the measurements, a known problem with magnetometers [6].
While this is not expected to be a problem when the IMU
is mounted on the plastic forceps, it limited our capability to
experimentally evaluate the system attached to a haptic device.

V. CONCLUSIONS AND FURTHER WORK

This paper presents the successful development and verifi-
cation of the hardware that will be used for the localisation
of a surgical tool’s RCM and the point of insertion into the
trocar, during co-manipulated robotic vitreoretinal surgery. The
assembled prototype will be used as a platform for further
work to be carried out on the project.

During the verification tests, the IMU measurements were
found to be noisy. It was concluded that this was caused by
the cables and the connectors being pulled during use of the
forceps. To prevent this, it is recommended to switch to a
wireless IMU, which can connect directly to the PC. The
slight increase in size and weight of the system would not
affect the handling of the forceps and would also remove the
need of a micro-controller. It is also recommended that the
magnetometer should be calibrated in situ and should not be
mounted on top of metal to prevent errors in the rotation.

Further work will consist of developing the algorithms that
will estimate the RCM and trocar locations. These two points
will be used as part of the control system of the co-manipulated
robot to warn the surgeon when there in an unintentional
misalignment between the two points.
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Abstract—Affective computing, or computing with mood and
emotion, is likely to become an integral part of home robotics
in the near future. Affective computing solutions have been
developed across multiple sensor modalities, of which a popular,
non-invasive solution is wearable biometric sensors. There are
purpose-built devices for this task, however their price-point is
largely prohibitive to their adoption in large, multi-user affective
systems. This paper aims to address the issues with access to
these devices by validating the use of off-the-shelf sensors for
use in affective systems, with a mood prediction problem.

Index Terms—affective computing, wearable computing, sen-
sors, smart living

I. INTRODUCTION

Affective computing is a field of artificial intelligence
concerned with translating human moods and emotions into
machine-understandable data [1]. It is a relatively recent field
in artificial intelligence and as such it is difficult to find
any reports on acceptable standards for components used in
affective systems. Therefore, the validation of off-the-shelf
components for building reproducible and affordable affective
systems is important.

Affective computing systems are likely to become an impor-
tant part of home robotics, particularly in smart living spaces
(assisted or otherwise [2]) and for the operation of “helper” or
therapeutic robots. Most commonly, biometrics-based affective
systems use galvanic skin response (GSR) to measure changes
in electro-dermal activity to help determine mood; GSR is a
sympathetic nervous system response which is not consciously
controllable and has been directly correlated to mood [3]. The
other two common sensors used in wearable biometric devices
are skin temperature and heart rate [4].

The system presented here is capable of high accuracy using
generic off-the-shelf sensors. This is established through an
analysis of the time-series’ regression values and root mean
squared errors.

II. EXPERIMENTAL SETUP

A. Sensors and Modalities

Three sensors were used to collect data from two partici-
pants: a blood-volume pulse (BVP) sensor for monitoring heart
rate, a temperature sensor (negatively-correlated thermistor
type) for monitoring skin temperature, and a two-finger GSR

sensor. The BVP sensor was attached to the index finger of the
left hand, the temperature sensor to the inner forearm, and the
GSR sensor was attached via the built-in finger-tip sleeves to
the index and middle fingers of the right hand. A simple script
was written for the Arduino which read from the sensors when
the system was switched on, and a Processing script took that
data and wrote it to a CSV file for later use.

B. Participants
The two participants were both female, aged 25-30 years

old, and both were UK nationals and postgraduate students.
All three sensors were attached to a participant whilst they
undertook the experiment, which recorded BVP, GSR, and skin
temperature for the length of the experiment.

C. Affective Photographs
The experiment to collect affective data used a series of

images from the Geneva Affective Picture Database (GAPED,
[5]) across positive, negative, and neutral affect. Each image
in the database is assigned a valence and arousal value based
on the circumplex model of emotion, scaled to the axes as
in Fig. 1. A series of six randomly-selected images from
each emotion type (total of 18 images) were put into a
PowerPoint presentation, one image per slide, and were shown
to the participant whilst they were wearing the three biometric
sensors and the system was recording the data from the
sensors. The distribution of the valence-arousal values of the
images selected is presented in Fig. 2. The participants were
aware of the emotion type but not of the exact valence-arousal
value of the image they were being shown.

Fig. 1. Valence-Arousal axis for GAPED images
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D. Classification System

The biometric data recorded, as well as the valence-arousal
coordinate labels provided by the GAPED database, were
used build a classification system. The data was pre-processed
before being used to train a nonlinear autoregressive with
extraneous input net (NARX-Net) time-series. The raw data
from the sensors was split into 18 segments (one per image,
based on timestamps) with each segment containing 83 data
samples (each data sample consisting of three normalised
values for BVP, GSR, skin temperature). To create targets
for the NARX-Net, the valence-arousal of each image was
used to produce an emotion vector consisting of 83 points
which moved from (50, 50) (neutral in the valence-arousal
model used by GAPED) to the target emotion’s (valence,
arousal). A time-series was chosen due to the dynamic nature
of emotions, as a time-series would preserve the idea that an
emotion changes over time.

For classification, an individual NARX net was trained for
each class of emotion. Training examples were presented to the
nets with a 15% hold-out for validation purposes. These time
series were trained on the normalised data streams from the
sensors; a feature set was tested, but due to the short period of
time biometric data was recorded for reducing the raw signals
to a feature set did not leave enough data for a classification
system to be built (the nets showed high levels of inaccuracy
across all emotion classes after training, indicating the data
was not suitable).

III. RESULTS AND DISCUSSION

Regression graphs were plotted after training and gave cor-
relation coefficients (R-values) thus: negative-emotion R-value
of 0.88; neutral-emotion R-value of 0.99; positive-emotion R-
value of 0.98. The final root mean square error (RMSE) of
each of the networks was as follows: negative-emotion RMSE
1.30e-8; neutral-emotion RMSE 9.65e-10; positive-emotion
RMSE 9.71e-15.

The R-values and RMSE values combined reflect an accu-
rate model built from biometric readings and valence-arousal
values, using generic components. This forms a strong base
for future work in off-the-shelf sensor validation for affective
computing use, as well as providing justification for systems
using generic components. This should make affective com-
puting more accessible for home use.

Fig. 2. Valence-Arousal distribution for images selected for the experiment

IV. FUTURE WORK

Future work should focus on validating generic components,
as presented here, against purpose-built affective research
devices, by using the same experimental design as other work
in order to form a direct comparison between the sensors’
fidelity. Work may also be done in validating a wider range
of sensor modalities where a generic sensor is available, e.g.
electromyogram sensors or cameras for facial recognition, and
comparing results to those from other affective computing
experiments.

V. CONCLUSION

In this paper, an affective system using affordable, mass-
produced, off-the-shelf sensors was built to collect biometric
data for use in an emotion classification system. A classifi-
cation system was built from this data, which means these
sensors are of high enough fidelity for use in both research and
commercial affective systems. Future work may build on this
base by repeating experiments done with currently available
affective sensing systems, and directly comparing the accuracy
of developed sensors to generic components.
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Abstract—A robotic manipulator operating within a confined

space ideally positions its end-effector with minimal spatial

displacement of each link. Achieving certain poses can require

a large overall displacement of the hardware. This work inves-

tigates the effect of an additional degree of freedom (DOF) at

the end-effector of a KUKA LBR iiwa14 arm by assessing the

space occupied by the arm during 6 manipulation tasks and the

dexterity of the arm within its workspace.

Index Terms—Dexterous Manipulators, Path Planning,

Workspace Analysis, Constrained Motion

I. INTRODUCTION

While a commercial robotic arm can reach many poses
when operating in free space, the path required to reach
these poses can require a large motion of its links, especially
when attempting a change in end-effector orientation [1].
This large motion could be problematic when operating in
confined spaces, for example, when picking an item from
within a cluttered cupboard. Although the required pose to
pick the item may be achievable by the arm, the path the
arm must travel through to reach that pose could be blocked
by the cupboard walls or other items on the shelf. Existing
robotic kitchen systems [2] are able to cook pre-defined recipes
when operating within a standardised environment. However,
most domestic spaces are optimised for the robot workspace.
Previous studies have been performed implementing a robotic
arm for domestic use within cluttered environments which
found difficulty in successfully achieving grasp poses [1] [3].
Performance could be improved by minimising the motion
required of the robotic arm when positioning the end-effector,
in order to lower the occurrence of object collision. To achieve
this, additional DoF could be provided in the end-effector
of the kinematic chain [4] [5]. This paper investigates the
impact of an additional revolute joint at the wrist of the end-
effector when carrying out a series of tasks within a restricted
workspace. Herein, we simulate an additional joint at the
interface between a KUKA LBR iiwa14 7DoF robotic arm
[6], Fig. 1 and a Franka Emika parallel gripper [7].

II. METHODOLOGY

The analysis is performed by simulating the arm in two
kinematic configurations, for comparison. First, with a rigid
link between the arm and the gripper and, subsequently, with

This work was supported by EPSRC EP/S021795/1.

Fig. 1. Left: KUKA robot joint axis (A) and links (L) [6], Right Top: Fixed
Gripper Configuration A, Right Bottom: Mobile Gripper Configuration B

an additional revolute joint (the gripper’s wrist) positioned
between the arm and the gripper, as shown in Fig. 1. The
arm model is the IIWA STACK metapackage [8] which has
been simulated in Gazebo [9], controlled using ROS [10] and
Moveit! [11]. The added gripper wrist joint has a range of -
90� to +90�, with its axis of rotation perpendicular to KUKA
axes A6 and A7. This provides a 3-axis rotation at the end-
effector. No model mesh has been created for this joint; as a
simplification, it is assumed that the gripper is attached directly
to the final joint of the KUKA arm (A7) without interfacing
hardware, meaning that no additional length is considered
at the interface in either configuration A or B, Fig. 1. Two
experiments have been explored regarding the impact of the
gripper’s added wrist joint on: a) the spatial displacement of
the arm’s links (manipulation task) and b) the workspace of
the arm when planning Cartesian motion (path planning task).
The arm is controlled in end-effector space and the joint angles
are found by Movit! default kinematics solver KDL.
A. Manipulation Task

The spatial displacement of the arm has been analysed
for 6 object manipulation tasks: 2 pick-rotate-and-place tasks
(rotates as it moves), 1 pick-and-pour task (rotate about an
edge) and 3 wrenching tasks (rotate about a centre point).
For each task, the end-effector follows the same path in both
the fixed (A) and mobile (B) gripper configurations. During
motion, the centre line of each link of the arm sweeps out
a surface, Fig. 2. The area of this surface is calculated for
each task. In comparing the two configurations, a smaller total
swept area indicates a more effective motion.
B. Path Planning Task

The workspace is sampled at 10cm intervals within the
+X+Y+Z quadrant for a total of 1400 goal positions. The arm
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Fig. 2. Surface swept by each robot link, L, during a wrenching motion

is commanded to place the end-effector at each position in six
different orientations to give a total of 8400 goal poses. The
ability to plan a simple point to point straight line path from
an arbitrary start pose to each of these goal poses is assessed
in both the fixed (A) and mobile (B) gripper configurations.
The start pose is arbitrarily selected: A1=20°, A2=20°, A3=0°,
A4=-40°, A5=0°, A6=70°, A7=0°, Gripper Wrist Joint=0°. To
validate the sampling interval, the workspace is sampled at
1cm intervals for one orientation. This showed similar (success
rate to within 0.5%) results to 10cm sampling for the same
orientation. For computational efficiency, the interval of 10cm
is then used for all poses.

III. RESULTS

Table I presents the results of the manipulation task. The
total area of the surfaces swept by the links of the KUKA
arm are presented for each of the six object manipulation
tasks. Although the impact of the gripper’s added wrist joint
was low for the pick, rotate and place tasks (a reduction
in swept area of <10%) the optimisation achieved for the
wrenching tasks, where the object is rotated about it’s centre
point, was much more substantial (>50%). This suggests that
for changes in end-effector orientation occurring over smaller
distances, the optimisation of movement is more significant
than for movements occurring over larger distances. Table II
presents the results of the path planning task. The number
of positions successfully reached by the Cartesian point-to-
point planner is shown according to the number of orientations
successfully reached at each position. Whilst the added wrist
joint has low impact on the number of positions reached in
at least 1 orientation (improved from 64% to 68% of the
workspace sampled), it has impacted the end-effector dexterity
at those positions. With the added wrist, 42% of the sampled
workspace positions are reached in at least 4 orientations and
23% are reached in all 6 orientations. Without the wrist, no
points in the workspace are reached in 5 or 6 orientations and
only 4% are reached in 4 orientations.

TABLE I
MANIPULATION TASK RESULTS

Motion
Total Swept Area [m

2
] Mobile Gripper

Swept Area

Reduction

Fixed
Gripper

Mobile
Gripper

Pick, Rotate in
X and Place 0.29 0.27 6.8%

Pick, Rotate in
Y and Place 0.31 0.28 7.6%

Pick and Pour 0.24 0.21 14.3%
Wrench about X 0.21 0.10 50.1%
Wrench about Y 0.35 0.17 52.4%
Wrench about Z 0.33 0.13 60.8%

TABLE II
PATH PLANNING TASK RESULTS

Orientations

Reached

Fixed Gripper

Configuration

Mobile Gripper

Configuration

Positions
achieved

% of sampled
workspace

Positions
achieved

% of sampled
workspace

At least 1 895 64 956 68
At least 2 605 43 822 59
At least 3 349 25 717 51
At least 4 60 4 582 42
At least 5 0 0 473 34

All 6 0 0 319 23

IV. CONCLUSION
The addition of a single degree of freedom at the end-

effector reduces the space occupied by the robot arm and
improves point-to-point path planning success for motions
where a large change in orientation occurs over a smaller
distance. Reduced improvement is shown for motions with a
smaller change in orientation or where the orientation change
occurs during motion over a longer path. Within a confined
space however, it is more likely to be necessary to maneuver
over small distances and to need to perform larger orientation
changes. The added wrist joint allows the goal pose to be
achieved whilst minimising the spatial displacement of the
preceding links of the robot arm.

This work is a preliminary investigation into the potential
improvement in performance achievable with a robot arm
of increased end-effector mobility. Future work will account
for the interfacing hardware and design of the wrist joint.
Although this experiment has been performed using a specific
commercial robot arm and gripper, it is expected that the
findings would be applicable to all similar setups.
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Abstract—We created a video game in order to collect data
for an application of learning from demonstration during the
Covid-19 pandemic. The game simulates the arrangement of
strawberries on a farm, and the game requires players to make
decisions about harvesting. The data we collected from players
indicates that there is a pattern to human behaviour when
planning the sequence in which strawberries are harvested.

Index Terms—agricultural robotics, human robot interaction,
harvesting sequence, learning from demonstration

I. INTRODUCTION

The cycle time for picking fruit is one of the major bot-
tlenecks in current robotic harvesting [1]—current cycle times
are too high—but so far very little research has been devoted to
cycle time optimization compared to other robotic harvesting
tasks [2]. Cycle times can be improved by optimizing the har-
vesting sequence [3]. For robotic harvesting of sweet peppers,
experimental results indicate that planning the sequence of
tasks using the traveling salesman paradigm (TSP) results in a
12% cost reduction [2]. In robotic grape-harvesting, an energy
optimal method for computing the harvesting sequence in path
planning has been proved to improve the general performance
[4]. For strawberry harvesting, [5] suggested that the robot
sorts all of the strawberries from low position to high to suit
the working mode of the gripper.

This previous work leaves room for improvement in plan-
ning the harvesting sequence, especially when the environment
around the target fruit is complex. As the number of targets
and the number of obstacles around the targets, increases,
using exhaustive search to find an optimal harvest sequence
within reasonable time is not feasible and heuristic approaches
must be sought. Here we describe steps towards learning from
human patterns of harvesting. We used a virtual environment,
a feasible approach to collect data for such research [4], and a
convenient one during restrictions on doing experiments face-
to-face on campus due to Covid-19.

II. EXPERIMENTAL PLATFORM DESIGN

Strawberry plant model. The strawberry plant model
used in the video game ignores leaves and only presents
the distribution of strawberries, both ripe and unripe. The
model is derived from a dataset that includes 1143 images

Supported by the China Scholarship Council (CSC).

Fig. 1. (a) and (b) Dataset and distribution of red stawberry in plan and
elevation view; (c)interface of the game.

of Driscoll’s Amesti Strawberry taken by a robot in 2019 in
polytunnels at Riseholme, Lincoln. The images—186 taken
from bottom of the plant and 957 from the side—contain labels
for 2997 ripe strawberries and 34101 unripe strawberries in
total. The arrangement of fruit in 3D is simulated from the
distribution of strawberries in elevation and plan views respec-
tively (Fig.1 (b)). The number of ripe and unripe strawberries
follows the pattern in which they appear in each image. The
strawberry models were created using Blender, and can be
easily distinguished from each other by colour as shown in
the game interface in Fig.1 (c). Overall, the model is designed
to represent scenes that a robot might view when harvesting
period of Amesti strawberries. Deriving the model from field
data means that the data collected from the game will be
representative of real harvesting tasks.

Video game design. The video game is a WebGL project
created with Unity [6]. It is available online [7], so users
can play the game easily with their own device even during
social restrictions. The operation data for each player who
played the game, including score (percentage of ripe strawber-
ries collected), time used, player movement, locations of all
strawberries and the order in which strawberries are chosen, is
collected anonymously and sent to a cloud database after each
round of the game, and is cleared from the cloud storage, and
moved to local storage at intervals.

The game provides three different modes: training mode,
easy mode and hard mode. In all modes the user can shift
their viewpoint in the game, which we refer to as moving the
“camera”, remembering that the viewpoint is that of a robot.
Training mode introduces the game. Easy mode simulates
human strawberry picking by requiring the user to click on the
ripe strawberry to “harvest” it. Hard mode simulates harvesting
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by a robot gripper. Thus the user needs to move the gripper
with keyboard to a suitable area above the target strawberry
and then press a key to harvest. The user needs to collect all
the ripe strawberries to win the game. To help select good
demonstrations for further research, if a user collects unripe
strawberries by mistake, they will lose points.

III. EXPERIMENT DESIGN

To analyse user preferences when collecting strawberries,
anyone above 18 is welcome to take part in the experiment. 1

To create more robust results, users are encouraged to finish
the training mode first, and then play easy mode or hard mode
as much as they wish.

For each round of the game, the record will include the
sequence of collecting strawberries, the trajectory taken (the
camera in easy mode, and the gripper with camera in hard
mode), the map of all the strawberry positions and the score. In
each game, ripe strawberries are collected in sequence. When a
ripe strawberry is selected, it is considered to be “better” than
all the others in that situation. We call each situation in which
such a choice is made a scene. To simplify the description
of each scene, the selected strawberry in a certain scene is
then paired with all the other ripe strawberries in the same
scene. The choice made by the user means there is always
a preference between each pair of strawberries. Using such
preferences, we can construct a preferred harvesting sequence.
The score is checked for each game. As game records with
mistakes are not considered to be good demonstration, only
game records with a full score are used in our analysis.

To describe the strawberry and the environment more pre-
cisely, the following parameters are considered. Distance: the
distance from the player to the target in 3D; the distance from
previous collected strawberry to the target in 3D; and the
distance from player to the target in 2D (no depth information).
The location of the player for the purpose of these distance
calculations is the position of the camera in easy mode, and
the position of the gripper in hard mode. Visibility: if the
target is in the field of view of the camera; the number of
obstacles between player and the target; and the percentage of
target that is covered. Space around target: the space around
the target is divided into 27 cuboids (3x3x3, the centre cuboid
contains the target), and the type of strawberries as obstacles
in each cuboid is recorded.

The parameters for the two strawberries in a pair are placed
in a vector, and the vector is labelled depending on the
ordering of the two strawberries. A basic neural network (NN)
with two fully connected hidden layers was trained on the data.

IV. EXPERIMENTAL RESULTS

Information on the datasets collected from the game to date
is shown in Table I. The results are trained and tested on
similar sized samples of the datasets. We consider data from
easy mode games that had just 2 and 3 ripe strawberries (2-
b and 3-b) as separate from data gathered from other easy

1Ethical approval was granted by the King’s College London IRB, reference
MRSP-20/21-21386.

TABLE I
DATASETS.

Games Pairs Fruit selected
2 strawberry (2-b) 499 499 998
3 strawberry (3-b) 137 411 411
Other easy mode (EM) 102 726 1241
Hard Mode (HM) 36 347 243

TABLE II
RESULTS FOR NN TRAINED ON DIFFERENT DATASETS

Tested on
2-b 3-b EM HM All

2-b 98.80% 90.75% 90.22% 74.35% 82.47%
Trained 3-b 86.17% 92.73% 74.98% 76.66% 80.56%

on EM 81.36% 82.73% 80.19% 74.79% 75.53%
HM 78.96% 77.13% 82.92% 80.36% 74.40%

mode games (EM). The accuracy of the NN trained on each
dataset is shown in Table II. The highest accuracy is 98.80%,
both trained and tested on 2-strawberry easy mode game
results. Comparing different rows, it is noticeable that the 2-b
dataset is the best choice to train a robust classifier. There is
also a clear difference between easy mode results and hard
mode (HM) results, as classifiers trained on 2-b work very
differently on hard mode dataset comparing with other easy
mode datasets.

V. SUMMARY

We described a video game simulating strawberry harvest-
ing to collect human demonstrations. The experiment suggests
that human harvesting follows a pattern that can be retrieved
from the data collected. We plan to use this in future research
on task allocation in harvesting. And this sequence sorting
pattern will be compared with other sequence sorting algo-
rithms. The low accuracy of the classifier trained on the HM
dataset may be due to the small dataset, so we plan to collect
more data to provide clear conclusions. about human working
patterns.
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Abstract—This paper describes a hazard analysis for an

agricultural scenario where a crop is treated by a robot using

UV-C light. Although human-robot interactions are not expected,

it may be the case that unauthorized people approach the robot

while it is operating. These potential human-robot interactions

have been identified and modeled as Markov Decision Processes

(MDP) and tested in the model checking tool PRISM.

Index Terms—agricultural robotics, UV-C treatment, hazard

analysis, human-aware navigation, model checking

I. INTRODUCTION

In commercial growing operations, crops are sprayed with
various pesticides in order to keep diseases at bay. To help
reduce the use of chemicals, our collaborators at SAGA
robotics have developed a robot that can dose strawberry
plants with UV-C light to treat powdery mildew. The robot
configuration used during the UV-C treatment is presented
in Fig.1, where the robot straddles the tables on which the
strawberries grow so that the UV-C emissions are directed
inwards. The UV-C dose is carefully calibrated to not damage
the strawberry plants but it can harm any other living thing that
come closer than 7m to the robot. Thus, even though human-
robot interaction during the UV-C treatment is unlikely, it is
always possible that an untrained human decides to approach
the robot to have a look. For these situations it is crucial that
the robot incorporates an on-board safety system with the aim
of detecting the approach of a human, alerting the human of
the danger and stopping operations if it is required.

In this context, this paper summarizes the potential risks and
failure modes identified during a hazard analysis of the UV-C
treatment scenario. These failures are then used to construct a
model of the human-robot interaction which can be translated
into a Markov Decision Process (MDP) to be tested by the
PRISM model checking tool [2]. Some preliminary results
assessing human injuries are given, pointing some important
safety requirements that must be considered during the design
and validation of a safety system architecture for the robot.

II. METHODOLOGY

A. Hazard identification

For the hazard analysis, we followed the systematic tech-
nique called Failure Mode and Effects Analysis (FMEA) [3],

This project is supported by the Assuring Autonomy International Pro-
gramme, a partnership between Lloyd’s Register Foundation and the Univer-
sity of York.

Fig. 1: The robot configuration for the UV-C treatment.

which involves identifying and evaluating potential hazards
in a system, their occurrence frequency, and determining the
severity of the consequences. [4]. In this context, Table I
gives a list with the three main risk situations that may occur
during UV-C treatment according to a cognitive walkthrough.
The consequences of identified failures correspond to potential
injuries from UV-C light (F2 and F3), and the risk that people
are not getting aware of the danger and continue approaching
(F1 and F4) which later contribute to the F2 and F3 occurrence.

B. Safety requirements

The hazard identification is used as input for a Functional
Hazard Analysis (FHA) in order to define safety requirements
which reduce the severity and/or occurrence of the failures
F1-4 described in Table I. In our case, the following two
requirements were proposed:
SR1: The robots must incorporate an Audiovisual Alert Sys-
tem (AAS) to signal their current behavior and potential
danger. The alerts are triggered any time a human is detected
(hopefully above 7m), but also are programmed to be activated
periodically in case a human was not detected on time.
SR2: The robots must implement a robust Human Detection
System (HDS) based on LiDARs and/or cameras that can
detect human presence above 7m. In this way, the robot can
stop operations before the human get closer than 7m.

III. PRELIMINARY RESULTS

A. Modelling

The human-robot interactions during UV-C treatment and
the behavior of the safety systems (i.e HDS and AAS), were
modeled as Markov Decision Processes (MDP) in which the

41



TABLE I: List of possible risky situations and failure modes during UV-C treatment.
Possible situations Code Possible failures Potential effect Consequence Severity Ocurrence

Robot moving along
the row while a human
is approaching frontally

F1 Robot fails to detect
human farther than 7m

Robot audiovisual
alerts are not activated

Human is still
approaching to the robot critical occasional

F2 Robot fails to detect
human closer than 7m

Robot safety stop
is not activated

Human is injuried
by the UV-C light catastrophic occasional

Robot at the end of the row while
a human is approaching laterally F3 Robot is aware of the human presence

only when they are too close
Robot safety stop
is not activated

Human is injuried
by the UV-C light catastrophic probable

Robot detects a human and
activate audiovisual alerts F4 Human was not trained

to interpret the alerts
Human is not getting
aware of the danger

Human is still
approaching to the robot marginal remote

transition between states is non-deterministic and modeled by
probability distributions. To implement the MDP model in
PRISM, a single module was created with 5 local variables
which define the states of the robot, human, HDS, and AAS.
Ten constants were used to define the transition probabilities
of the human decisions, and to characterize the effectiveness
of HDS beyond 7m and the effectiveness of the AAS to make
the human aware of the danger. Additional auxiliary variables
were used to synchronize the transition of states in a specific
order. Full details may be found in [1].

B. Model checking

The MDP was analyzed through model checking. Figure
2 gives preliminary results showing how the probability of
human injury varies according to the occurrence of failures F1-
4. During the experiments, the probability of each failure was
varied from 0 to 1 while keeping the probability of remaining
failures constant at 0.1 (i.e. failures are always present, but
the aim is to analyze which failure influences the most on
human injuries). In all the plots, the potential human injuries
were also evaluated according to the probability of a human
deciding to approach the robot. This probability was varied
from 0 to 1 and is shown on the x-axis as the probability
of human-robot interaction. The riskiest situation is shown
in Fig. 2(c) where, under the assumption that the robot is
completely unaware of the human when they approach from
the side, the probability of injury is 0.52. The remaining plots
showed a much lower chance of injury, with the probability
of human injury being less than 0.1. These preliminary results
suggest that more effort should be put on robustify the HDS
when the robot is at the end of the rows than where the robot
is moving along the row. Moreover, pre-programmed explicit
voice messages may be activated each time the robot is going
to leave a row in order to get the human (trained or not) aware
of the robot presence on time.

IV. CONCLUSIONS

This paper presented a preliminary assessment of potential
human injuries during UV-C treatment operations. Based on
the failures identified during a traditional hazard analysis,
we have constructed a probabilistic model to evaluate the
effectiveness of any proposed safety systems. The results
of the model checking gives the user guidelines on how
to improve the current safety systems effectiveness either
through improving detection algorithms, adding new sensors
to overcome possible hardware limitations, or by including
new safety policies related to the workspace.
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Fig. 2: Probability of a human getting injured by the UV-C
light when varying the occurrence probability of a) F1 b) F2 c)
F3 d) F4. The three remaining failures which are not analyzed
on each case are assumed with a fixed occurrence of 0.1.
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Abstract—This paper describes our work to assure safe auton-
omy in soft fruit production. The first step was hazard analysis,
where all the possible hazards in representative scenarios were
identified. Following this analysis, a three-layer safety architec-
ture was identified that will minimise the occurrence of the
identified hazards. Most of the hazards are minimised by upper
layers, while unavoidable hazards are handled using emergency
stops. In parallel, we are using probabilistic model checking
to check the probability of a hazard’s occurrence. The results
from the model checking will be used to improve safety system
architecture.

Index Terms—agricultural robotics, human-robot interaction,
hazard analysis.

I. INTRODUCTION

The UK food supply chain network, from farm to fork, has
an average total worth of £108 billion every year and employs
around 4 million people (close to 12% of the workforce). The
current relatively low level of productivity can be enhanced
using Robotics and Autonomous System (RAS) [3]. RAS, in
combination with other digital technologies, can have a very
positive impact on overall food production by enabling higher
production [4]. This is because RAS can work for longer than
human workers, and can deal with weather conditions that
humans find unpleasant [5]. This increased productivity means
that the use of RAS could potentially add £58 billion to the
food sector of the UK economy [5]. In the current, post Brexit,
scenario in the UK, the food production industry anticipates,
and indeed has already experienced, a shortage of labour. This
has led to increased demand for RAS equipment [2] while also
meaning that, unlike in other sectors, there is no significant
danger of increased automation displacing human workers.

Soft fruit makes up 21.3% of the value of all the fruit and
vegetables grown in the UK, with strawberries contributing
almost 12.5% (£274 million). Soft fruit is thus an important
part of the horticulture sector in the UK. Soft fruit production
is also very labour-intensive — see for example [1] —
and these higher labour costs, compared to other areas of
horticulture, mean that RAS can be particularly beneficial. It
is for these reasons that we are focussed on the use of robots
in soft fruit, particularly strawberry, production.

The use of RAS can increase production, but for the
near future, RAS in soft fruit production will have to work
alongside humans, and in the agricultural environment [5]
this means that there is considerable risk. We believe that the

This project is supported by the Assuring Autonomy International Pro-
gramme, a partnership between Lloyd’s Register Foundation and the Univer-
sity of York (2020-2022).

Fig. 1: A Thorvald robot as used in our work

risks involved in using RAS for soft fruit production can be
minimised by through a process of hazard identification and
mitigation, and that is the work that we are engaged in.

II. OVERVIEW

Our work is designing techniques that can contribute to the
safe autonomy robots that assist in strawberry production, par-
ticularly focusing on safe human-robot interaction. The robots
used in this work are Thorvalds, robots that are medium-sized,
see Figure 1, but large enough to potentially cause damage to
a human co-worker.

We are focusing on four scenarios in a farm setting that is
sketched in Figure 2:

• UV treatment: Robots deploy UV light to kill powdery
mildew. The UV treatment is performed at night time
when there are no farm workers in action. As UV light
is dangerous for humans no humans should have access
to the polytunnels where the plants are during the UV
treatment. There is no close interaction with the robot
during UV treatment.

• Logistics: Robots bring empty trays to fruit pickers,
collect full trays and take them to the collection point.
The pickers have close interaction with the robot during
logistic operations, putting full trays on robot etc.

• Scouting: In scouting, the robot traverses the polytunnels
to collect data (photos of plants) using RGB cameras.
This data helps in predicting yield, making treatment
decisions and helping to plan harvesting.

• Automated picking: The robot, equipped with a picking
arm will be used either for fully automated picking or
work alongside other pickers. The robot may come in
close interaction with a human during fruit picking.
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Fig. 2: The major components of a typical fruit farm.

III. PROGRESS

A. Hazard analysis and mitigation
The first step in our work was to identify all hazards in the

four scenarios and categorise them [7]. Having identified the
hazards, we could start to design mitigation strategies to avoid
the hazards or, at least, minimise their occurrence. It quickly
became clear that mitigation would depend upon three key
functionalities — the ability to detect people, identify their
intentions and predict their motion [6].

B. Functionalities
Detecting the presence of humans is the keystone of safety

in a farm context. While the robots are equipped with a
mechanical stop, meaning that they will not hurt a human
co-worker through collision, activating this will shut the robot
down, hurting efficiency. Detecting people at range using 2D
and 3D LiDAR will allow the robot to perform a more graceful
avoidance, meaning the mechanical stop does not need to
be invoked. In addition, in UV treatment, any human within
7m of the robot may suffer UV burns, so detection at range
is essential. Having detected people, reliably predicting their
motion allows the robot to more efficiently navigate around
them rather than stopping and waiting for them to move away,
and being able to determine human intentions — signaled
using gestures — will further improve robot efficiency.

C. Safety architecture
Assuming the ability to detect people and predict motion,

the safety architecture in Figure 3 can help to ensure safety.
The architecture is made up of three connected layers where,
each layer is designed to address safety interaction at a
different level, and higher layers aim to reduce the activation
of lower layers. The aim of layer three is to plan routes which
minimize the probabilities of interaction with human workers
which share the work space. If an interaction is detected, this
layer will re-plan in order to avoid the robot having to pause
for a long time. In case an interaction occurs, layer two in-
troduces human-to-robot and robot-to-human communication
to both make the robot behaviour more comprehensible to
the humans and to allow the robot to infer more precisely
human intentions in order to increase the fluency of planned
interactions and prevent the human and robot getting too

Fig. 3: The safety system architecture.

close to one another. When a close interaction is about to
happen, layer two is also responsible for ensuring a safety
by reducing robot speed, performing evasive maneuvers or
pausing operations. Finally, if layer two fails to ensure a safe
close interaction, the layer one will activate emergency stops
in case of imminent physical contact. These stops can be
activated by LiDAR readings or by anomalies detected though
soft sensors mounted on the robot structure.

D. Probabilistic model checking
In order to validate and enhance the safety features of the

robot we are using the probabilistic model checker PRISM
to model the human-robot interactions as Markov Decision
Processes. The resulting probability models of each agricul-
tural scenario predict the probabilities of the failures identified
during the hazard analysis help us to assess the effectiveness
of the robot safety system architecture. This analysis will be
complemented with experiments in a soft-fruit farm setting.

IV. CONCLUSIONS

We have performed a hazard analysis on four scenarios
that span the soft fruit production process, and based on
this analysis are designing a safety system architecture that
provides a layered approach to dealing with these hazards.
Probabilistic model checking allows us to quantify the risks
faced in deployment.
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Abstract—This research proposes to improve standard auction-
eer systems in Multi Robot Task Allocation (MRTA) with a novel
auctioneering strategy called ‘Manipulative Dynamic Auction
System’ (MDAS), which is inspired by the ‘Leaky Integrate and
Fire’ neuron model of the human brain. This model is developed
and simulated as an extension of MRTeAm, a ROS based software
framework built to test MRTA auctioneering strategies. The
performance of MDAS is compared against a simpler version of
Dynamic Auctioneering named ‘Simple Dynamic Auctioneering
System’, as well as a standard Stationary Auctioneering System
called the ‘Ordered Single Item Auction’, using a range of
experiments. It is observed that MDAS is faster and more efficient
than the Simple Dynamic Auctioneering System. Also, it is more
sophisticated in its allocation of tasks to robots, when compared
to Stationary Auctioneering Systems, due to its consideration
to the behavior of robots during the auction process. Potential
for future research lies in building a Hybrid Auctioneering
system using a combination of both Stationary and Dynamic
Auctioneering Strategies for task allocation.

Index Terms—Multi Robot Task Allocation, Auctioneer Sys-
tems, Multi Robot Systems, Fleet Management, Dynamic Auction

I. INTRODUCTION

Challenging application domains like space and underwater
exploration, search and rescue, and agricultural robotics can
benefit from Multi-Robot Systems, as they often deal with
tasks that are difficult to solve with a single robot, or too
critical to rely on a single robot. The complexities of task
allocation in Multi-Robot Systems has led to specialisation
of the area called Multi-Robot Task Allocation (MRTA) [1].
MRTA is usually an NP-hard Optimization problem that is
modelled in the form of a Fair Division, Optimal Allocation, or
Travelling salesman problem [2]. Each of the techniques used
for task allocation has its own advantages and disadvantages.
The complexity of MRTA increases with the number of robots
and tasks, heterogeneity in robot capabilities, coalition require-
ment for tasks, time constraints in tasks, and unpredictability
in the appearance of tasks.

The advancement of autonomous Multi- Robot systems
raised the problem of task allocation from that of simple
scheduling to optimisation, involving several different con-
straints like the capabilities of the robot, distance from task
area, and time efficiency in task completion. The research

EPSRC Centre for Doctoral Training in Agri-Food Robotics

presented in this paper proposes a novel methodology for
MRTA using Manipulative Dynamic Auctioneering System.
This idea is inspired by the Leaky Integrate and Fire neuron
model based on the working of human brain [3]. The proposed
method is implemented in a simulated multi-robot environ-
ment, and its performance is analysed and inferred over a range
of experiments by varying core parameters of the system.

II. LEAKY NEURON MODEL INSPIRATION FOR TASK
ALLOCATION

A notable drawback observed with any competitive robot
model, including most of the conventional market-based meth-
ods and some of the optimisation methods, is the enormous
increase in computational load with the increase in the number
of robots. To understand this shortcoming better, imagine a
large fleet of robots competing for the same task. It is highly
probable that with increasing numbers of robot competitors,
there is an increase in close competition between some of
the robots. To address this problem while leveraging the
advantages of a decentralised optimisation approach, a novel
idea for MRTA is discussed below.

The logic behind a popular neuron model of the human
brain called ‘Leaky Integrate and Fire’ (LIF) can be adapted
for the MRTA problem. The LIF neuron model is based on
the assumption that the postsynaptic currents of the neurons
competing in the brain have to cross a set threshold in order
to fire [4]. After a competing set of neurons fire, it is theorised
that the winning neuron of that round, not only increases its
own current (self-excitation), but also sends a small inhibitory
current to the other neurons in competition to diminish their
value. This behavior is observed over a number of distinct
time intervals, and it is seen that at the end an ultimate winner
is selected after the postsynaptic current of all the remaining
neurons reach zero [5].

By modelling the inhibitory behavior, it is expected that the
computation complexity of task allocation will be reduced,
speeding up the process. A simple outline of this MRTA
problem would be to allocate the robots of varying capabilities
to a variety of tasks that require the service of one or more
robots. Taking agricultural robotics as an example, while tasks
such as tilling/ploughing might require just a single robot,
some other tasks like harvesting might require one robot for
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the harvest action, and an accompanying trailer robot on the
side for grain collection. This might even involve an additional
problem of synchronisation [6]. To evaluate the suitability
of the robots, a simple score/weight can be assigned for
every task based on the degree of requirements they satisfy.
Based on these weights, the robots compete to be allocated
with a task. These robots are modelled based on the neuron
behavior suggested in the ‘Leaky Integrate and Fire’ approach.
The relative performance of this model in terms of time and
computational complexity is expected to improve with the
increase in the number of robots and tasks, when compared
against other traditional models without an inhibitory action
in their auctioning or competing system.

III. MANIPULATIVE DYNAMIC AUCTIONEER SYSTEM

Manipulative Dynamic Auctioneer System (MDAS) builds
on the Simple Dynamic Auctioneer (SDA) System by strate-
gically altering the bid values of robots in each round of the
bidding. In Figure 1, it can be observed that after the bids are
collected from the robots, a positive increment is given to the
highest bid and the rest of the bid values are decremented.

Figure 1. System Diagram for Manipulative Dynamic Auctioneer System

If the altered highest bid is greater than the ‘Win Threshold’,
the winner is announced right away, else all of the altered bid
values are retained and are added to the bid of the respective
robots in the subsequent bidding rounds, and the process is
repeated. The auction for each task is carried out until one
of the bids surpass the ‘Win Threshold’ value or after the
bids have been collected for the specified ‘Time Threshold’.
In either case, the robot with the highest bid at the end of the
auction round is announced as the winner.

IV. RESULTS

The performance measure Bid Count is an indicator of
the time taken for assigning a task to a robot. Bid Count
denotes the number of auction rounds taken before assigning
a task. Figure 2 shows the graphs of Bid Count for the three
auctioneering strategies used in the experiments. It can be
inferred from the results of the experiments that Manipulative
Dynamic Auctioneering Strategy is an improvement on the
Stationary Auctioneering Strategies like Ordered Single-Item
(OSI), due to the consideration it gives to the heterogeneity of
the robots and its pattern of travel across the experiment site,

Figure 2. Bid Count comparison amongst diffrent auctioneering strategies

while not consuming as much time as taken by the Simple
Dynamic Auctioneering Strategy. From these observations,
one of the main objectives of this research, to showcase
the sophistication of Manipulative Dynamic Auctioneering
Strategy inspired by the LIF neuron model of the human brain
has been met.

V. CONCLUSION

While the decision-making process is very basic in Station-
ary Auctioneering Strategies like the OSI, one cannot overlook
the rapid speed at which task allocations are carried out in such
methods. The strength of MDAS is its potential to handle the
allocation of unexpected tasks that crop up while the robots in
the environment are already at work. A system that combines
both these strategies in such a way that pre-defined tasks are
handled by the Stationary Auctioneering System, and unex-
pected tasks via Manipulative Auctioneering System, should
perform well for autonomous Multi-Robot environments. This
idea could be an interesting research possibility in optimisation
of Auction Mechanisms for Multi-Robot Systems.
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Abstract—Multi-robot task allocation mechanisms are de-
signed to distribute a set of activities fairly amongst a set
of robots. Frequently, this can be framed as a multi-criteria
optimisation problem, for example minimising cost while max-
imising rewards. In soft fruit farms, tasks, such as picking ripe
fruit at harvest time, are assigned to human labourers. The
work presented here explores the application of multi-robot task
allocation mechanisms to the complex problem of managing a
heterogeneous workforce to undertake activities associated with
harvesting soft fruit.

Index Terms—Task Allocation Mechanism, Multi-Agent Sys-
tem, Agent-Based Simulation

I. INTRODUCTION

Multi-robot task allocation (MRTA) problems address sit-
uations in which a group of robots must work together to
complete a set of tasks. A key challenge is to decide which
tasks should be assigned to which robots so that a mission is
accomplished by using resources efficiently and maximising
rewards. Auctions are a popular approach because they offer
the ability to be flexible and adapt to changes in the environ-
ment, as well as balance priorities when multiple criteria need
to be considered in the allocation of resources.

As mentioned within the literature [1]–[4], auctions are
executed in “rounds” that are typically composed of three
phases: (1) tasks are announced to a set of agents, (2) the
agents bid on the tasks and (3) an agent is rewarded the task
with the winning (e.g. lowest) bid. A prominent strategy in the
literature is the sequential single-item (SSI) method [5]. SSI is
fast (the auction runs in polynomial time in the worst case) and
efficient, while also being able to produce an allocation that
is close to or within a guaranteed factor away from optimal.

Applying multi-robot teams to agricultural robotics [6] has
recently been gaining attention. This extremely challenging
application domain presents many opportunities to consider
not only traditional problems faced in robotics around (e.g.)
control, sensing and manipulation, but also emerging issues
around human-robot collaboration. One of these challenges is
to allocate fruit harvesting tasks to human (and in the near
future robotic) labourers efficiently.

This work was supported by Research England [Lincoln Agri-Robotics] as
part of the Expanding Excellence in England (E3) Programme.

II. METHOD

We have developed a simulation of the harvesting process
on a small strawberry farm in which tasks are allocated to
workers by applying an auction-based mechanism. Harvesting
fruits involves two types of tasks and two types of agents that
address those tasks: pickers harvest fruit in the field and place
the produce in punnets; and transporters collect full punnets
and deliver them to a centralised location called a pack house.

Our simulation (developed in MASON [7], which is a light-
weight, multi-agent simulator) is shown in Fig. 1. The coloured
patches represent the picking tasks; the colour indicates the
number of ripe fruits: red indicates a relatively high number
of ripe fruits and green a low number. Each patch contains in-
formation on how many ripe fruits are occluded by the canopy
(leaves). This illustration was created based on the yield of one
day during the 2020 season. Pickers are represented as grey
triangles, starting at the left edge of the field, and transporters
are represented as grey circles, starting in the pack house.

We compare three different auction-based mechanisms [8],
for allocating picking and transporting tasks: Round Robin

(RR) assigns the first task to the first agent, the second to the
second agent and so forth. After one task has been assigned
to each agent, the process is re-iterated to assign each agent
another task. This process continues until all tasks have been
assigned to an agent. In Ordered Single Item (OSI), all agents
bid on the first task and the agent with lowest-cost bid is
assigned the task. The subsequent task is then auctioned. When
all tasks are assigned, the process concludes. For Sequential

Single Item (SSI), in each round all unassigned tasks are bid
on by all agents. The task of the lowest-cost bid is assigned
to the agent who placed that bid.

Pickers are defined by the tuple p = {v, l, Sp}, where

Fig. 1. Our strawberry farm within the simulation. See text for explanation.

47



l is the agent’s initial location and v its navigation speed;
Sp = {so, su}, the agent’s occluded (so) and unoccluded (su)
fruit picking speed. The cost of a picking bid is the number
of timesteps it takes the picker to navigate to the picking
location, pick the ripe occluded and unoccluded fruits, and,
when necessary, wait for a transporter. After a picker has filled
a punnet with strawberries, it cannot pick any further fruits,
and so a transport task is generated.

Transporters have a navigation speed and an initial location,
i.e., r = {v, l}. The cost of a transporting bid is the time it
takes the agent to navigate to the picker, collect the filled
punnet and take the punnet to the pack house. Three different
modes were implemented for allocating tasks to transporters.
For all 3 modes, implementations of RR, SSI and OSI were
developed. To differentiate between these and the mechanisms
implemented for allocating picking tasks, each adds a prefix
to the mechanism name (e.g. WRR):

• Whilst scheduling picking (W): Transporters can be
scheduled as soon as a transport task is created. This
enables a picker’s bid to include the time spent waiting
for the transporter.

• Post scheduling picking (P): The transporters can be
scheduled after all transport tasks have been created (i.e.
all picking tasks have all been assigned). This could result
in the creation of a closer to optimal schedule for the
transporters (but potentially at the expense of the pickers).

• whilst Executing picking (E): Alternatively, transporters
can be scheduled during execution, which facilitates
delays (e.g., due to collision avoidance) to be accounted
for within the transporters’ schedules.

The aisles (i.e. the spaces between the crop rows) are too
narrow for agents to pass side-by-side; therefore, two agents of
the same type cannot be within the same aisle, and transporters
can only enter an aisle if the picker they are assisting is
performing the task they require assistance with. If an agent
cannot enter an aisle, it waits beside the aisle. These rules can
cause deadlocks to occur as transporters and/or pickers could
be delayed and blocked from entering an aisle. To prevent
deadlocks, a transporter swaps its current task with a task that
appears later in its own, or another transporter’s, schedule.
Collisions in open spaces are avoided by the agents making
adjustments to their paths or waiting.

III. RESULTS

We performed a series of experiments, with four different
picker configurations (i.e. picking speeds and initial locations)
and two random assignments of ripe fruits (that were counted
during the 2020 picking season) to fruit patches. These exper-
iments employed 4 pickers and 3 transporters. We compare
the three auction mechanisms used for scheduling pickers
(RR, OSI and SSI) and nine mechanisms for scheduling
transporters ({RR,OSI, SSI} ⇥ {W,P,E}). The results were
analysed using factor analysis in order to determine the in-
fluence of picker or transporter mechanisms individually or in
combination. As expected, SSI results in the shortest execution
time (i.e. time it takes to perform the mission). Figure 2a

illustrates that there are statistically significant differences for
the execution time. Figure 2b shows the ablated results for all
combinations of transport task scheduling modes and auction
mechanisms, demonstrating that ESSI and EOSI results in the
shortest execution times. ESSI and EOSI are equivalent since
only one task is available to auction each time the auction
is run. Overall, when the results for each picker scheduling
mechanism and each transporter scheduling mechanism and
mode are ablated, SSI is the superior auction mechanism for
assigning picker tasks and E with OSI or SSI is the superior
mode for assigning transporter tasks.

(a) Picker scheduling mechanisms
(H = 150.04, p = 0.00).

(b) Transporter scheduling modes and
mechanisms (H = 45.40, p = 0.00).

Fig. 2. Factor analysis. The statistical significance (H and p statistics),
calculated by running Kruskal-Wallis tests [9], are reported in the captions.

IV. CONCLUSION

The experiments presented here explore the application
of auction-inspired task-allocation mechanisms to assigning
strawberry harvesting task to pickers and transporters. A data-
backed simulation of a real-world soft fruit farm is presented.
Our current work involves scaling the results to larger farms,
using data recently obtained from two commercial farms with
over 500 pickers at each farm in the height of the season.
Early results indicate that the trends seen here will hold.
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Abstract—Human-Robot Collaboration (HRC) requires not 
only technical safety but also a level of comfort for humans to 
ensure that humans and robots work and interact safely in the 
daily process flow. This paper presents a review of preliminary 
design considerations on how a robot arm can be controlled to 
explore various safe and personified movements in order to 
assess and improve legibility of robot performance in the 
presence of moving humans at home, industry, or any other 
environment. 

Keywords— human-robot collaboration (HRC), perceived 
safety, robot manipulation, motion planning, workspace, fetch 

I. INTRODUCTION 
Human-Robot Collaboration (HRC) is a rapidly 

developing area of robotics. Several research studies have 
shown that spontaneous and continuous human-robot 
collaborations can be achieved in industrial settings [1]. The 
robots considered are ranged from simple robotic 
manipulators [2] to complex humanoid robots [3], which are 
expected to help human co-workers in various tasks that may 
require coordination for a safe, successful, and efficient 
execution. HRC implies that a robot enters the personal 
workspace and comfort zones of a human co-worker, causing 
safety concerns. Technical safety is largely accounted for by 
the robot supplier and it has been a central point in HRC 
research [4]. 

Recent research in HRC is focusing on human factors 
and human-centred design [5]. Of particular research interest 
is the mutual understanding and anticipation of each other's 
intentions. To this end, robots should be capable of 
interpreting several communication mechanisms similar to 
mechanisms involved in human-to-human interaction [6]. 
However, human related aspects like perceived safety, 
emotional and teamwork are less investigated and needs 
further exploration. 

This paper presents an assessment study on safe robotic 
arm motion trajectories and how human factors could play a 
role in safe collaborative manipulation tasks in an industrial 
HRC environment.  The main focus of our study is the 
development of a custom model for safe robot arm 
movements in an industrial HRC scenario. In addition, 
coordination methods based on human-human collaboration 
will be examined for their application on fluent and effective 
human-robot collaboration. This will provide information for 
further development in design standards for robot arm 
manipulation and contribute to human-robot co-working 
quantitative models. 

II. INVESTIGATIONAL APPROACH 
This study could help in the development and 

implementation of tracking and fetching algorithms for 
collaborative robots. However, in real scenarios, external 
factors, such as, unanticipated obstacles, mechanical failures 
[4], may affect the performance of robot motion. Therefore, 
several experiments will be conducted to investigate those 
challenges. For manipulation tasks, the exchange of objects 
between a human and a robot is a basic way to coordinate 
movements and jointly perform useful work. For coordinated 
manipulation, it will explore the approach presented in [7], 
which demonstrated the technical feasibility of exchanging 
objects when a robot and a human work together. 

 The proposed approach to the robot arm manipulation 
tests can be simply explained as illustrated in figure 1 by a 
basic pick & place process. Figure 1(a) shows how a robot 
arm rotates with its arm entering directly into the personal 
space of the human co-worker, thus, causing human-robot 
collision. In figure 1(b) it can be seen; a single addition of a 
retractable step helps to avoid collision with the human. The 
robot arm retracts (joints J2 and J3) before rotating and 
extends again to reach the end position. The intrusion action 
in figure 1(a) compromises a larger volume of the workspace 
and makes its final destination unpredictable, whereas the 
rotation in figure 1(b) compromises less volume. This study 
would reveal a broad spectrum of experimental proposals, 
which can be examined to determine and implement safe 
movements around human subjects and evaluate their 
effectiveness. 

 

 

 
Fig. 1. (a) Robot arm rotating in joint J1 straight to position close to human, 
(b) Robot arm making intermediate safe step before rotating. 

III. EXPERIMENTAL METHOD AND SETUP 
The experiments will implement a pick and place 

application setup as well as a human-robot co-assembly task, 
which comprises the Fetch robot arm and the use of Robot 
Operating System (ROS). Python and/or MATLAB 
programming will be used to code the ROS packages. The 
idea is to achieve different variations of safe robot arm 
movements around a human user or any obstacles. The 
motion planning scenarios will be executed through the 
Gazebo simulator (to rapidly test algorithms, design robots 
and train AI system using realistic scenarios) and RVIZ 3D 

 

(a) (b) 
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visualization tool (tool for ROS applications which provides 
a view of the robot model, captures and visualises sensor 
information and shows ROS topics communication). The use 
of simulation and visualisation software allows to develop 
and assess the intended ideas and prototype implementations 
of this study in risk free virtual environments, with the ability 
to edit, retry and adjust configurations and algorithms safely. 
Based on the kinematics, the motion formation will be 
designed to construct the robot arm workspace and 
configuration space. 

The software will be programmed to enable the robot arm 
to read its sensors data (speed, acceleration, time constraints, 
potential fields, etc) and make itself aware of the workspace 
and make motion decisions, i.e., avoiding obstacle while in 
motion. The main task would be to complete an action, for 
example, a pick and place motion and move its end-effector 
from point 'A' to point 'B', as exemplified in figure 3, while 
avoiding any obstacles. To investigate perceived safety, 
human participant experiment will be devised where both the 
robot and the human user will perform a collaborative task 
within a shared workspace. Dragan et al. [8] investigated 
both positive and negative impacts of different planning 
motions on human comfort by comparing multiple robot 
motion trajectories and controlling the robot with varied 
velocities. Our tests will be designed for the robot to be able 
to gradually adjust its arm speed according to the separation 
distance between the participant and the robot. Participants 
will be provided with a questionnaire for feedback on 
human-robot closeness, robot response speed and human 
comfort. These participant responses will play a significant 
role in improving human comfort and achieve safe motion 
trajectory. 

Fetch Robot 
The Fetch mobile manipulator is designed to be robust 

and of high-performance [9]. Fetch is equipped with a single 
7 degrees-of-freedom arm which supports up to a 6 kg 
payload, including the gripper. The head of the robot is 
capable of two motions: pan and tilt. Torso has a lift 
actuator which makes it possible for the robot to move up 
and down as shown in the figure 2. 

 
Fig. 2. Fetch Robot illustration [9]. 

The Fetch also consists of sensors that will be utilised in 
this study. a) Base Laser - SICK TIM571 scanning range 
finder with a range of 25m, 220° field of view, 15Hz update 
rate and angular resolution of 1/3°, b) IMU - the Gyroscope 
within the 6-axis inertial measurement unit (IMU) has the 
capability of measuring +/-2000 degrees per second, while 
the accelerometers are capable of measuring +/-2g, c) Head 
Camera - Primesense Carmine 1.09 short-range RGBD 
sensor best calibrated in the 0.35-1.4m range, d) Gripper 

Sensors - in addition to the position and effort feedback of 
the gripper joint, the gripper incorporates a 6-axis IMU. 
 
 
 
 
 
      
 

 

 

Fig. 3. Gazebo Simulation - 'Pick up' object at Point A and 'Place' at Point B. 

Main Tasks 
1) Identify and locate obstacles, 2) Apply motion 

planning algorithm, 3) Calculate the path avoiding the 
obstacles, 4) Based on the path, calculate robot arm joint 
configurations (these data will be used in simulation for 
testing and verification), 5) Finally, evaluate the joint 
positions to move safely and reach the goal. 

IV. DISCUSSION AND FUTURE WORK 
To evaluate the proposed approach, simulation 

experiments will be carried out based on existing path and 
trajectory planning methods to distinguish between the two 
and then implement the motion configuration. Immediate 
future work includes the development of several simulations 
to help preparing the physical experimentation setting(s) to 
implement and test the algorithms and the proposed solution. 
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Abstract—The difficulty of task planning for robotic agents

arises from the stochastic nature of their environment and

the high cost of a failure during execution meaning frequent

replanning is required. One way to address this problem is to

make use of a pre-defined plan library. In this paper, we present

work that combines a plan library with task planning. Initial

results show that such an approach alleviates the computational

burden of synthesising plans, while providing the same level of

autonomy as using a planner that starts from scratch.

Index Terms—Task Planning, BDI, Case-Based Reasoning,

Plan Library, ROSPlan

I. INTRODUCTION

In order for robots to become helpful in dynamic and
stochastic environments, their reasoning about their actions
must combine two qualities: autonomy and speed. Autonomy
to decide for themselves how to achieve their goals, regardless
of the situation they are placed in [1] and speedy reasoning
so that they can perform in dynamic environments where
plans can become unusable if a robot takes too long to
synthesise them. One way to ensure that the robot has a high
degree of autonomy is by reasoning directly about the state
of the environment. Most systems that do this are based on
STRIPS [2], and help the robot to come up with a sequence
of actions (i.e. plans), from a set of available operators that
would satisfy a set of explicit goals given in a planning task.
The downside of this approach is that it is PSPACE-complete
in the simplest versions (propositional planning), and becomes
more difficult the more expressive the models become [3].

One approach to deal with this computational complexity
is to make use of pre-defined plans that a robot then looks
up rather than having to plan from scratch. Several examples
within this paradigm have been based on the Belief-Desire-
Intention (BDI) model [4], such as Jason [5], which has a
predefined Plan Library. The downside to this approach is
that the robot is limited to the prescribed behaviours, trading
some autonomy for computational efficiency. Meneguzzi [6]
describes the approaches that try to combine BDI with state
based planning, but in a limited manner as plans are not added
into the Library.

Here we describe a complementary approach. It starts with
no plan library, carries out task planning to achieve goals,
stores the plans that are generated, and reuses them where
possible. We implemented this idea by introducing a Plan
Library node in ROSPlan [7], a middle-ware layer between

task planners and the Robot Operating System (ROS). This
Plan Library node checks if the current planning task has
already been solved. If it has, rather than invoking the planner,
the previous plan is sent to the acting component.

II. PLAN LIBRARY FOR ROSPLAN

The Plan Library is a proxy for the Planner Interface from
the default ROSPlan framework. Previously solved problems
together with their plans (stored on in YAML format), are
loaded as a dictionary during initialisation.

When the node receives a planning task as a PDDL file from
ROSPlan’s Problem Interface, it parses it into three parts: types
indicating the types of instances involved in the problem, init
defining the predicates in the initial state, and goal integrating
the variables from the goal state. Next, the node iterates over
the Plan Library, matching its initial state and goal elements
with those of the problem it needs to solve. If there is a match,
the iteration is interrupted and the plan from that Plan Library
element is sent to the Parsing Interface.

If no problem from the Plan Library is found to match, then
the problem is sent to the planner via the Planner Interface
node. If it returns a solution to the problem, then it will
be added as a new entry to the Plan Library along with
the tasks types, init, and goal. The proposed methodology is
PDDL agnostic, accepting all planning languages available in
ROSPlan.

III. EMPIRICAL EVALUATION

We used the temporal domain Office, consisting of a robot-
assistant operating in a dynamic office setting. The robot is
tasked with navigating the environment and bringing different
office resources (e.g.: mugs, post or papers) to the people
in it, asking humans for help when needed. We created 10
problems, increasing in planning difficulty — taking from 3
to 20 seconds to compute, and varying in length between 40
and 140 actions. Each of these problems was then solved
and its robot execution simulated. Each action had varying
probabilities of failing during execution (between between 0.5
and 0.9). When an action failed, a new plan was computed
from that state. We ran each problem 40 times sequentially,
meaning that the plan library was not cleared between these
iterations, allowing the robot to learn through additions to the
plan library. We compare our method with a standard version
of ROSPlan without a Plan Library. We used the POPF planner
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(a) (b)

Fig. 1: Summary plots averaged across all action failure probabilities on (a) Total planning time in seconds; (b) Number of
plan in the plan library. Average values in blue, with ±1 std deviation (red).

[8] with a timeout of 30 seconds to compute the plans. The
overall system was given 500 seconds for each problem to be
solved and reach the goal.

Over the course of our experiments, the modified version of
ROSPlan reached the goal 1403 times out of the 2000 problem
instances it faced (timing out the remaining times). The system
spent an average of 0.022 seconds (7.2% of the total planning
time) searching for plans in the Plan Library. The problem
requested from the system was found in the Plan Library
64.6% of the times in total. In comparison, the standard version
of ROSPlan managed to reach the goal 1645 times, performing
better than the Plan Library version in the problems with more
actions (100+). This is due to the fact that the Plan Library
was being used blindly, exploiting only the plans it had solved
already, with no exploration, meaning that if it got a poor plan
in a prior run, it had a higher chance of getting stuck in it. This,
together with higher action probability, would lead the agent
into states that would need more than the allocated planning
time (30 seconds) to solve, causing it to fail to reach the goal.

In Figure 1, we can see how the plan library performed
overall. In short, across all the problems and probabilities of
action failure, the plan library works effectively. Figure 1a
shows that, over successive runs, the cost of planning falls,
while Figure 1b exhibits that the plan library grows, but
showing signs that the size of the library will plateau. The
second of these is exactly what we would expect, and the first
is exactly what we would hope.

IV. CONCLUSION & FUTURE WORK

Our results show that for a dynamic environment and
medium length tasks, our approach manages, after a short
number of runs, to gain enough experience for a considerable
speed-up in deliberation to emerge.

Our experiments make the big assumption that all actions
fail with the same probability. Once Covid allows, we will run
experiments in real world environments, where action failure
is a property of the world instead of it being defined in our
simulation. This will give us a better idea of how often a Plan
Library can be used, and how fast it can accumulate knowledge
about the environment. Seeing if we can balance exploitation

of past plans with exploration to discover new plans would be
complementary to this work.

Knowing that the time spent searching for a plan is short
(7.2% of all planning time), we will investigate if it is
possible to add planners [9] that search for better quality plans.
Comparisons between different types of heuristics [10] will tell
us if using a Plan Library, makes it possible to use classical
optimal planners in planning for robotics.

Finally, we are investigating if having a library of the robot’s
abilities would increase the explainability of its reasoning
process. Given such a library, the robot would be able to keep
track of its executions, giving a more in-depth explanation for
its decision based on its experiences.
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Abstract—Advanced technologies have significant impacts on

every aspect of education, where digital connectivity is the

foundation to support the way people learn. Current Internet

and pre-5G cellular communication networks can deliver visual

and auditory data, which enable distance/virtual learning. How-

ever, remote physical interaction between students and learning

facilities, which is an essential part of a new education paradigm

is still missing. The 5G cellular network with impressive latency

and reliability performance would be a game changer by enabling

students to attend remote physical learning environment. In this

paper, we introduce our prototype of real-time remote laboratory

which enables students to attend remote physical environment

and have interactive laboratory session with help of robotics.

Index Terms—5G, prototype, remote lab, education

I. INTRODUCTION

The Covid-19 pandemic has affected 1.5 billion learners
in 185 countries [1] and accelerated the transition from tra-
ditional education towards ubiquitous, personalised education
that is part of the connected digital ecosystem [2]. Traditional
education relies on face-to-face teaching in classrooms with
hard copy materials. All assessments and examinations are
paper based with space and time limited laboratory sessions.
Mobile and digital connectivity will revolutionize education
and make knowledge easily accessible.

Unfortunately, there are several aspects of higher education
that require physical interaction between the student and
laboratory facilities. This makes remote access to physical
laboratories one of the vital requirements of future education.
In order to enable remote access to the physical laboratories,
the communication network needs to be able to deliver infor-
mation with very high communication performance in terms
of latency, reliability, and data rates. The fifth generation of
cellular communications (5G) will enable new opportunities
for future education. 5G has outstanding performance and
capability [3] which are the foundations to support emerging
technologies in future education. For example, Ultra-Reliable
Low-Latency Communications (URLLC) would be the game
changer since it enables the exchange of physical skills
over the mobile communications [4], [5]. Enhanced Mobile
Broadband (eMBB) supported Virtual Reality (VR) [6] and
360� video streaming would provide immersive experience to
students in virtual classes. Massive Machine Type Commu-
nications (mMTC) supported smart campus would allow stu-

This work is in part supported by EPSRC IAA (EP/R511705/1) Project.
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Fig. 1. The structure of the remote circuit design Lab

dents to check the availability of facilities such as classrooms,
laboratories, and sport equipment and provide remote booking
and scheduling services.

In this paper, we focus on remote laboratory and training,
which would be the first time in education sector that allows
students to physically interact with remote laboratory envi-
ronment. We demonstrate our remote laboratory prototype in
Glasgow, UK and discuss future directions. Our main purpose
is to provide first prototyping efforts on remote laboratory and
training which will lead new directions and opportunities.

II. REMOTE LABORATORY AND TRAINING PROTOTYPE

In this section, we present one of the earliest prototypes
of remote laboratory and training1 as seen in Fig. 1. It offers
an unrivaled experience of remote interaction to students all
around the world. Physically, the lab is located at James Watt
School of Engineering, University of Glasgow, UK. It is now
accessible to students from all around the world where students
take control of a robotic arm to conduct circuit design exper-
iments remotely over internet connection. The robotic arm is
capable of assembling electrical circuits according to students’
control commands by precisely placing electronic components
(e.g. resistors, capacitors, etc.) on circuit boards. In addition,
the remote lab prototype enables remote measurement of
real circuit to complete lab task in circuit design courses.
Specifically, remote lab consists of three main components:

1The demonstration video can be found at https://youtu.be/RCR5l72HVuM
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Fig. 2. Student survey results on the prototype of the remote circuit design
lab.

• Robotic Arm: Franka Emika Panda robotic arm is used
as a remote teleoperator. Robotic arm is programmed for
assembling electrical circuits according to high-level user
commands using Franka Control Interface(FCI) [7].

• Communication Network: Conventional internet access
is used to communicate control commands and video
feedback packets.

• Control Interface: A custom control interface is devel-
oped to be used in remote lab prototype which provides
high level commanding interface to users.

Using aforementioned components, remote lab enables three
main capabilities. First, students can observe the remote lab
environment via high quality video streaming, which provides
more engagement to remote environment. Secondly, students
can control the remote robotic arm using custom design control
interface. Lastly, students are able to control lab equipment
(digital signal generator and oscilloscope) to take remote
measurements.

A. Teaching and Learning Perspective
So far, more than 30 students in UK and China have used

our remote lab prototype in their circuit design courses and
we have conducted a survey to collect feedback from them. In
Fig. 2, the survey results show that the majority of the students
are satisfied with the remote lab and interested in conducting
more remote lab experiments.

In addition, the remote lab prototype provides vast amount
of advanced resources such as robot aided circuit design lab
to more students with more flexible way which is not always
possible because of space and time limitations in traditional
lab environment. It also provides game based teaching with
the help of advanced technology which in turn grasps more
attention of students and enables more effective learning.

B. Discussion
The remote lab prototype is crucial in terms of two very

important aspects. First, it is critical for collecting students’
responses to real life remote laboratory experience. Second,
it is vital for demonstrating the communication requirements
of remote laboratory use case with real life testbed im-
plementation to further emphasize the necessity of the 5G

cellular communications. In this prototype, we have used
conventional internet connection to conduct remote laboratory
experiments in UK and China. We recorded communication
latency of between 50 � 300 ms in the UK and up to 2
seconds in China. Latency values are not stable and change
depending on locations, internet speed, or other uncontrollable
conditions in the internet. Students are asked for feedback
after every session and as shown in Fig. 2, 20% and 14%
(considering moderate, low, and very low) of students are
not satisfied and unwilling to further engage with the remote
lab experience, respectively, with latency being the main
contributing factor. Students expect more smooth interaction
with remote environment. In addition, high latency also affects
the quality of experience of students which could lower inter-
est and motivation in the subject. Another important aspect
is the reliability of the communication network. Similar to
other industrial robots, the robot is sensitive to packet loss
which affects the control performance. For example, it can
compensate for up to 20 consecutive packet drops then the
control process stops. This implies that packet loss rate is very
crucial in ensuring stable control which cannot be guaranteed
with current communication networks. These results show the
current capabilities as well as exigency of 5G and beyond
cellular communications.

III. CONCLUSIONS

The future of education system will be enabled by a
collection of emerging digital technologies which will create
ubiquitous, immersive, adaptive and personalized learning ex-
perience. 5G is the key enabler of this ecosystem by supporting
stringent communication requirements as well as providing
high quality of experience for both the learners and tutors. In
this study, we introduce our remote circuit design laboratory
prototype and discuss teaching and learning perspectives, and
emphasize the necessity of 5G for future education. As a
future work, we will extend the capability of the remote lab by
using 5G and Mobile Edge Computing to meet the stringent
requirements of this use case based on advanced 5G and
robotics platforms in University of Glasgow.
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Abstract—Using AI for agriculture requires the fast trans-
mission and processing of large volumes of data. Cost-effective
high speed processing may not be possible on-board agricultural
vehicles, and suitably fast transmission may not be possible with
older generation wireless communications. In response, the work
presented here investigates the use of 5G wireless technology to
support the deployment of AI in this context.

Index Terms—robotics, 5G, computer vision, agriculture

I. INTRODUCTION

The agricultural workforce in the UK is both ageing and
shrinking in numbers threatening food security of the UK. One
response is increased automation, employing robotics and AI
to lighten the load on UK farmers [2]. This has the advantage
of increasing sustainability, since it allows for more precise
targeting of fertilizers, herbicides and pesticides.

For example, herbicide is used to control weeds in fields
with young crops. The herbicides are selective, so do not
damage the crop, but kill the weeds. Currently, entire fields
are sprayed to ensure all weeds are treated. This is waste-
ful, spraying areas that do not contain weeds. Advances in
computer vision mean sprayers can be equipped to only spray
where there are weeds to kill. Such an approach is estimated
to save up to 90% [6] of the herbicide currently used.

Applications of AI in agriculture, which include the use
of robots for fruit harvesting and yield estimation as well as
weed and pest control, use cameras as their primary sensors.
State-of-the-art methods for processing these images are based
on deep learning. They therefore have heavy computational
demands which may not be met by the relevant vehicles,
either because of the power required, or because it is not
cost-effective to equip every vehicle with a suitable computer.
As a result, the computation may be delivered better through
edge or cloud computing. However, this creates a further
demand: that of transmitting the data from farm vehicles to
the processing. For a field sprayer with a standard 24 meter
boom, a spray nozzle per meter and HD cameras associated
to each nozzle to scan the ground below it, this can involve
transfer rates approaching 1 GBit/s which are beyond WiFi
and 4G wireless links.

Research is supported through a UKRI Research England E3 grant, Lincoln
Agri-Robotics; and through Ceres.

In the remainder of this paper we present pilot results from
work to demonstrate how 5G wireless can handle such a load.

II. NETWORKING EXPERIMENTS AND RESULTS

As an experimental platform, we are using a Leo Rover
robot (illustrated in figure 1) equipped with a Raspberry Pi
4 and two 5G-SA (stand-alone) enabled mobile phones. The
experiments were split into two parts, to evaluate WiFi and
5G network performance. The WiFi network used the 2.4GHz
band and the 5G network used the N78 band, which was
provided by the 5G mobile phones located on top of the
robot platform. In the experiment setup, the Rover (under
human control) followed a fixed path while streaming a video
of a sequence of images (at a resolution of 1920x1080 and
running at 30 frames-per-second) using a wireless connection.
The video stream was compressed over the network (H.264)
and the throughput was on average 7.64Mbps for WiFi and
6.86Mbps for 5G. The throughput for 5G is 10% better than for
WiFi. Due to the H.264 traits, the more unstable the connection
the worse the compression algorithm performs [5].

Fig. 1: The Leo Rover setup for 5G. The item in the orange
circle is a 5G mobile phone enabled with 5G-SA connectivity.

During the trials, the WiFi station was at a distance of ⇡10
meters from the robot, and the 5G antenna was on the roof of
a building at a distance of ⇡130 meters. For both connections,
we evaluated the latency; latency is the time taken for data to
travel to the destination and get back to the sender device.
To do so, we measured, in milliseconds (ms), the difference
between the time when a data packet was sent and the time
when the sender got the packet acknowledgement. Figure 2
shows the latency results of the WiFi and 5G networks. The
average latency for 5G is ⇡18ms and WiFi is ⇡227ms, which
is over 12 times greater. The lower latency average and the
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Fig. 2: Latency plot. Note the different y-axis scales between
the top (WiFi) and bottom (5G) plots. The maximum latency
for 5G is two orders of magnitude lower (better) than for WiFi.

smaller standard deviation for 5G over WiFi indicates that 5G
communications are more stable and consistent.

III. VISION RESULTS

As an example task, we are considering spraying for weeds,
as described above. From a machine vision perspective, this
means running an object detector on image data from the
vehicle. However, fast and accurate detectors require GPUs
with high specifications, which, in most of the times, cannot
be mounted on autonomous systems because high-end GPUs
require a lot of energy and need to remain steady. As discussed
above, a potential solution is to place the necessary GPU on
a remote server at risk of the transmission medium being too
slow or unreliable and limiting the vehicle’s mobility. How-
ever, our experiments suggest that a robot can communicate
with a GPU processor without significant issues with latency,
and hence reliability, if we are using 5G.

Another potential issue is the speed with which the object
detector can operate. We evaluated this using an object detector
to identify weeds within a sugar beet crop. The object detector
was YOLO5l, which is a one-stage object detector based
on a YOLOv4 [1] architecture with a backbone based on
CSPNet [7], a PA-NET neck [4], mosaic data augmentation,
and auto learning bounding box anchors. The size of the model
on the GPU is 3.9GB We trained this detector using the dataset
provided in [3], which contains pictures of sugar beets and
field bindweed with their corresponding ground truth bounding
boxes (fig 3.a). The dataset split was 70% for training, 10% for
validation, and 20% for testing. The detector was trained over
300 epochs using a batch size of 16, an SGD optimiser with a
learning rate of 0.0001 and a momentum of 0.95, and a image
resizing strategy where the shortest image side is converted to
640 pixels and the longest size is resized to keep the original
image ratio. The resulting trained model couldn’t run on the
robot’s Raspberry Pi 4, because the Pi’s RAM does not meet
the memory requirements of the model (3.3GB). However, the
model can run suitably quickly on a GPU. Based on the speed
with which a single image frame is processed, this model

(a) Ground truth data (b) Prediction example

Fig. 3: Sugar beet images with (a) ground truth bounding boxes
and (b) predicted bounding boxes. Note that since this work
was too early in the season for sugar beet to be growing,
our initial experiments involved a simulated field made up of
photographs from [3].

locates sugar beets and weeds at a speed of 104 fps (frames
per second) on a GTX1050 Ti and 196 fps on a RTX2080 Ti.

We tested the trained model over wireless connections using
the setup in section II, where the images contained sugar beets
and weeds, and the remote device receiving the video stream
had a GeForce GTX1050 Ti to operate the detection model.
During the WiFi and 5G trials, the detector identified items
on the video frames at a speed of 50 fps. Fig. 3.b shows an
example of the bounding boxes inferred by the detector. These
results confirm that, with high-end GPUs, vision systems need
not be a bottleneck in the detection of items in a video stream
as long as the data transmission is fast enough.

IV. CONCLUSIONS AND FUTURE WORK

Robot communication over 5G networks is faster and more
reliable than WiFi communications. Using 5G, we provided a
successful example of how the vision that is critical for agri-
robotics can be carried out on a remote computer.

Future experiments will test whether 5G networks can han-
dle more information (larger images, depth information) from
a single camera and information from multiples sources (more
cameras and more robots roaming the fields). A particular
challenge is scaling up to the number of cameras required
on a commerical sprayer.
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Abstract— Human-robot interaction (HRI) technology is 
growing rapidly, with many products being designed to operate 
outside the industry, such as in the home. However, controlling 
robots in a domestic setting is challenging due to high variations 
in such environments. Also, human behaviour varies, and the 
same individual might behave differently in similar situations. 
In this paper, the design of a wearable data acquisition system, 
comprised of wearable sensors and a control box that 
communicates wirelessly with sensors on the robot to improve 
safe human-robot collaboration on tasks, is revised. The 
literature review identifies factors that affect the robotic 
system’s wearability and leads to the production of a Product 
Design Specification (PDS), against which the original and 
subsequent designs of the set-up are evaluated. Several 
iterations are assessed, and how limitations in the original 
design are overcome are explained with reference to the 
system’s location, ergonomics, and wearability. The final 
prototype is then tested on human users using ‘range of motion’ 
and ‘representative task’ experiments to assess its improved 
wearability. The potential applications of the device in the 
domestic environment are explained and suggestions for the 
future scope of the research made.  

Keywords—Human-Robot Interaction, wearable technology, 
robots, product design, wearability, user friendliness  

I. INTRODUCTION  
Human-robot wearable technology has developed to manage 
the communications between a human and a robot, to allow 
them to collaborate safely and efficiently. This paper reviews 
human wearable technology that is being developed for an 
industrial setting and explores how it could be used 
domestically. The focus was to revise the design of the data 
acquisition box that uses wearable sensors to monitor a 
human’s physical and physiological state and then wirelessly 
communicates with a robot’s sensors to control its movement 
better, creating improved human-robot collaboration on 
tasks. How the system can be modelled to be aesthetic, 
ergonomic and comfortably located to enhance the user’s 
experience is explored and tested. The system investigated 
was produced by an Engineering and Physical Sciences 
Research Council (EPSRC) DigiTOP project. 

II. LITERATURE REVIEW 

A. Significance of Wearable technology 
In an industrial setting Human-Robot Collaboration 

(HRC) needs to work effectively to maximise efficiency and 
minimise risks, requiring situational awareness by the human 
and active avoidance of contact by the robot. Stress in 
humans can lead to a reduced situational awareness, which in 
turn can increase the likelihood of accidents [1]. Wearable 
technology is the communication interface between man and 
machine. Kasier et al. [2] found the ergonomic design of the 
wearable technology significantly impacts the user and 

therefore the effectiveness of the human-robot collaboration. 

B. Design of Wearable Technology 
Findings from an industrial setting can be applied in a 

domestic environment, where design factors such as 
aesthetics may prevail. Thomas et al. argues that when 
designing a wearable device emphasis must be put on human 
factors [3]. 

This includes aesthetics, which means a design that is more 
attractive than functional, shows improved desirability [4]. 
Potential hazards can be mitigated through ergonomic 
design, creating opportunities to produce a welcoming 
environment for use. To achieve comfort levels that enable 
humans to acclimatise quickly to the wearable technology, it 
must have acceptable temperature, shape, texture, weight and 
tightness [5], enabling normal movements without physical 
or psychological constraint. 

Contextual awareness affects comfort,  which can vary 
significantly in different social contexts [6].  Ease of use and 
simplicity can increase engagement level which can also have 
a positive effect on productivity [7]. Reliability is a key 
factor, and includes safety, precision and effectiveness [8]. 
Wearability involves physical shape and its active 
relationship with the human form and is a key aspect to the 
user’s engagement and satisfaction [9].  

C. Location of Wearable Technology 
The Institute of Complex Engineered Systems (ICES) has 

developed six parameters  for wearability [9] which affect the 
location on the body chosen for wearable technology 
products, and these include attachment: how forms are fixed 
to the body, size; cross section variation of the human body, 
human movement; how body form changes with motion, 
unobtrusivity; less obtrusive areas for wearable products, 
and body motion; areas with low movement/flexibility are 
shown by Langer lines, which define the direction within the 
skin that has the least flexibility. 

III. DESIGN, METHODOLOGY AND APPROACH 

The design approach was to develop a PDS and analyse the 
original design, and new iterations of the data acquisition 
system.  
Liaising with the DigiTOP team, the changing electronic 
needs were addressed, hardware improvements were made to 
accommodate the updated Printed Circuit Board (PCB) and 
other design changes were identified. The original design 
favoured functionality over human-centred design, so was 
not as user friendly and the body attachment was not optimal. 
Also, the original location was obtrusive, made movement 
difficult and ergonomically was not comfortable. Loose 
connections were causing electrical noise and wires outside 
the box caused issues as they interfered with the user’s 
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movements. [10].  

New design iterations were developed and assessed against 
the PDS until the most viable solution was created. The new 
prototype system was then tested by human users to assess its 
improved wearability using ‘range of motion’ and 
‘representative task’ experiments. 

The location on the body of the acquisition box affected other 
design factors and was therefore addressed first. The lower 
back area is one of the least intrusive places on the body, 
interfering minimally with prominent moving parts such as 
the arms and shoulder blades. The device is used primarily on 
standing pose, so this location does not interfere with a 
worker’s physical movement.  

Additionally, locating the device on the lower back allows 
wires to travel up the spine, making them unobtrusive and 
keeping them away from the user’s limbs, as shown in Fig. 1. 
The existing solution used a belt to secure the device, but 
there was no place to contain the wires effectively. After 
exploring different options, a vest type garment was 
identified as the most suitable. This allowed the device to be 
held securely in the desired location and provided a suitable 
means of containing the wires. The wires could also travel up 
the spine, contained in an enclosed section of the vest, 
avoiding complications surrounding the user’s movement.  

Next, the inner workings were considered. The new location 
influenced the layout of electronics significantly, allowing 
the wires to exit the top of the box and travel up the spine, as 
shown in Fig. 2. This meant the PCB was oriented on top of 
the Raspberry Pi with the battery and charging board 
positioned to the side. To reduce electrical noise the sensor 
connections to the electronics in the box are clamped within 
the box frame reducing movement.  

All design refinements were then tested to check they made 
the product more wearable, user friendly and effective. The 
new location allowed improved, uninterrupted movement and 
the improved wire layout avoided interference with the user 
as they were working. The vest meant the device could also 
be set up more quickly and easily.  

IV. RESULTS AND FINDINGS 
The data acquisition system was designed for an industrial 

setting. However, programming service robots to intuitively 
perform a domestic task can be achieved by capturing human 
action in a structured environment using the proposed design. 
Then, using artificial intelligence and machine learning 
algorithms, this data can be utilised to program robots to carry 
out domestic tasks with human-like behaviour. The redesign 
of this wearable technology system improved the control box 
location, wires layout, electrical noise level, ease of use, 

obtrusivity, comfort, wearability and housing of the internal 
electronics. All these improvements reduced any effect 
wearing the device might have on human behaviour whilst 
interacting with robots. As a result, improved classification of 
human intentions and activities during human-robot 
collaboration can be made; and hence robots can actively 
adapt to ensure human safety while addressing the required 
actions. 

V. RESEARCH LIMITATIONS AND IMPLICATIONS 
This research was limited to the informed redesign of the 

control box, the route of the wiring and how these are worn by 
the human. By improving the wearability of the system, which 
is used to allow humans and robots to work collaboratively on 
tasks, the redesigned prototype has improved many features 
that give it the potential and suitability to work in the domestic 
environment even though the DigiTOP system is designed for 
an industrial setting.  
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Abstract—This paper presents a novel concept of a hybrid 
wheel-legged robot used to navigate uneven or difficult terrain. 
We present the design prototype and validation testing where 
the onboard sensors’ data is used to navigate around or over 
obstacles with the wheels or legs. During testing the prototype 
was found to be able to climb a step of 70 mm using the legs. 
With further adjustment to the back of the robot this could be 
increased. It could also detect potential obstacles directly in 
front of it using only a few sensors. 

Keywords—mobile robot, hybrid locomotion 

I. INTRODUCTION 
Mobile robots with hybrid locomotion are a more recent 
research area for mobile robotics which offers the flexibility 
of leg-based movement combined with the efficiency of 
wheel-based movement. These types of robots have many 
applications, including remote exploration, assisting rescue 
operations, and deployment in environments not designed or 
adapted for wheel-based robots. 

Most existing designs fall into one of two categories: wheels 
fixed to the end of legs and wheels that transform into legs. 
The designs which feature wheels fixed to the end of legs are 
diverse: they vary from legs with only one degree of freedom 
[1] to designs with five actuators per leg [2]. The robots 
described in these papers tended to be larger than robots in the 
other category but have smaller wheels. This means when in 
use they would rely on legged movement more due to the 
small wheels being unable to reach any height above the 
radius of the wheel. The higher number of actuators means 
they are complex and expensive to implement. 

The category of designs which had wheels that transform into 
legs splits into two subcategories: wheels that transform into 
legs ([3] and [4]) and rotating legs that protrude outwards and 
rotate with the wheel ([5] and [6]). These designs are simpler 
than the ones discussed above but most still use several 
actuators per wheel/leg unit. Few designs have any physical 
validation or implementation. 

A further limitation of previous works is that they do not 
discuss how the robots could transition between wheeled and 
legged mode based on the environment (with the exception of 
[6], which uses an environment-based trigger to transition 
between wheeled and legged mode, but only climbing onto an 
obstacle is discussed, not climbing off). The solution 
discussed in this paper will feature autonomous transitioning 
between legged and wheeled mode. This work presents the 
results obtained during the final year project conducted by the 
first author. 

II. PROPOSED SOLUTION 
Our design is based on a combination of co-axial leg-wheel 
actuation which requires two actuators per wheel/leg unit and 

will use sensor information to autonomously transition 
between wheeled and legged mode. The wheels are 120 mm 
in diameter and the legs are 125 mm from axis centre to top 
edge. The robot is shown in Figure 1.  

 
Figure 1: The prototype with hybrid leg-wheel design. 

Overall, the robot has two wheels and two legs, and each leg 
rotates around the same axis as its corresponding wheel. The 
wheels are rotated using separate motors (for this 
implementation stepper motors have been used, but brushless 
DC motors can also be used). 

The legs are rotated using separate stepper motors, which are 
adjacent to the wheel motors. They control the legs via gears; 
with one gear attached to the motor shaft and the other 
attached to the leg. The gears have a 4:1 reduction ratio to 
provide more torque to the legs when lifting the robot. 

Although this slows the rotation of the legs to ¼ of the motor 
speed, the legs only need to do one full rotation in order to 
bring the wheels up onto the obstacle. In the centre of the leg 
gear is a bearing which allows the wheel and leg to move 
independently of one another. During wheeled movement, the 
legs sit stationary in the upright position (as shown in Figure 
1). When engaged they rotate once. 

The hook shape on the front end of the leg engages with the 
(horizontal) surface of the obstacle (ledge or step) to be 
climbed. 

This then lifts the robot onto the obstacle, until the wheels sit 
directly above the legs in the downwards position. The hooks 
are curved and wide to provide a smooth movement with 
enough grip to stop them slipping while the robot is being 
lifted into position. Once the legs have finished the rotation, 
the wheels re-engage, “dragging” the back of the robot up onto 
the ledge. This is shown in Figure 2. 

59



 
Figure 2: Robot overcoming 60 mm step. 

The robot is controlled using an Arduino Mega 2560 
microcontroller. For the initial testing of the concept, the 
controller is connected to a Bluetooth module which in turn is 
be connected to a smartphone application. The application is 
used to directly control the hybrid leg-wheel mechanism. 
Three distance sensors are placed on the front side of the 
robot: one ultrasound sensor and two infrared sensors. The 
ultrasound sensor is raised above the base of the robot (placed 
at a height just under the maximum leg height) and is used to 
detect open space above an obstacle. It is necessary to use 
ultrasound rather than infrared in this role because distance 
data will be needed to determine if there is enough space for 
the robot to climb onto the obstacle/ledge detected. One 
infrared sensor is placed on the base of the robot in a 
horizontal orientation and is used to detect obstacles and 
walls. The second infrared sensor faces downwards from the 
base and is used to detect drop offs that are too large for the 
robot to simply roll off, but rather test the distance with its 
legs. 

III. TESTING AND RESULTS 
The initial testing of the robot investigates the mechanical 
capabilities of the robot. This includes: the maximum upwards 
and downwards gradient the robot is capable of traversing; the 
maximum obstacle height the robot can overcome; the 
maximum drop off the robot can overcome (using its legs). 

The testing will be carried out on the same surfaces 
throughout. With the sensor placement as described in section 
II, the following research questions will be answered: can the 
robot detect and climb over obstacles of up to the maximum 
height reached in the initial experiments, can the robot 
determine whether a ledge is of a height that is safe to climb 
down, and can the robot detect obstacles and stop before 
impact? An accelerometer and gyroscope sensor will also be 
mounted on the robot base to provide data about the stability 
and vibration in the robot during movement. The testing will 
be performed on the same surfaces as the initial testing. 
Obstacles will be built from wooden blocks with the same 
wood piece on the top for each one, so the legs are using the 
same surface for each experiment. Each experiment will be 
performed ten times. 

During the initial testing it was found that the robot had a 
maximum climbing height of 70 mm. The limiting factor here 
was not the length of the legs as expected but the back of the 
robot, which was too heavy to be lifted higher and the legs 
slipped along the surface when trying to bring the back up onto 
the obstacle. The acceleration measurements showed 
considerable vibration during leg movement. The acceleration 
peaks observed in the data showed when the legs of the robot 

were lifting the wheels into the air. At the end of the 
experiment the back of the robot dropped off the obstacle, 
resulting in the large impact. 

IV. DISCUSSION AND CONCLUSION 
Our work has several limitations which will be addressed in 
the future. We are conducting more tests to explore the 
performance of the proposed hybrid locomotion mechanism 
on different types of terrain and obstacles. The design of the 
robot will be improved to address potential limitations. 

The limiting factor of the robot’s climbing was its inability to 
pull the back of the robot up onto an obstacle. This would be 
addressed in a four wheeled version as it could use the back 
legs to climb, and it could possibly handle more weight. It may 
also be possible to decrease the time taken for the robot to 
climb an obstacle by increasing the speed of the leg rotations. 
Further experiments can be done to optimise the speed so the 
robot can both move faster and still lift any specified weight 
requirements. 

Future design versions may support four legged-wheeled 
configurations for applications such as rescue and remote 
exploration tasks. Further sensors may also be added to 
increase the awareness of the robot and improve its response 
to more complex obstacles. We plan to test the proposed 
concept combined with human-machine interfaces previously 
developed in our team [7,8,9] 
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