
Web based ROS interface for telepresence
Sean Katagiri∗, Joshua Roe, Matthew O’Hara, Jonatan Scharff Willners, Sen Wang and Yvan Petillot

Institute of Sensors, Signals and Systems
Heriot-Watt University

Edinburgh, UK
{s.katagiri, joshua.roe, m.ohara, j.scharff willners, s.wang, y.r.petillot}@hw.ac.uk

Abstract—This paper describes the approach of using roslibjs
in combination with rosbridge to create a custom web interface
for remote telepresence. Remote connection from the web server
to the robot is established through Husarnet to allow access to
multiple robots simultaneously with low latency without the need
to be in the same network. The interface enables viewing a 360
image that can be scrolled through, multiple views of the virtual
visualisation of data, sending waypoints to the autonomous pilot,
as well as basic controls of a manipulator attached to the
Autonomous Underwater Vehicle (AUV). This approach has been
tested with multiple users from around the world successfully
operating an AUV remotely.

Index Terms—Marine robotics, telepresence, navigation,
human-robot interaction

I. INTRODUCTION

With the increase in demand for autonomous inspection
systems in remote locations such as offshore structures, there
has also been an increase in demand for interfaces for en-
abling human operators to monitor and operate these systems
remotely. Such an interface is required to have low latency
on long-range remote operation, the capability to convey the
relevant data comprehensively to the operator, and take user
input from the operator to send commands directly or adjust
the behaviour of the autonomy. A web-based solution can be
used to allow access regardless of the type of smart device used
to access the interface while being very easy to customise the
User Interface (UI) elements, and supporting the integration of
databases for user authentication as well as supporting multiple
endpoints. Telepresence for marine robots has previously been
used for observation of a subsea robot during environmental
assessment [5]. In this paper, we will demonstrate a proof
of concept design for a platform-agnostic web-based remote
operation interface that is capable of handling multiple users
simultaneously. The interface is also equipped with a full web
stack with user authentication allowing control over access
levels for each functionality, enabling distinction between
observers with no influence over the autonomous system and
operators with full control.

II. VISUALISATION

A key component of the system for enhancing telepresence
is the 360 image that can be scrolled around in to view the

This work was supported by the EPSRC funded ORCA-HUB
(EP/R026173/1).

∗ Corresponding author.

surrounding image, shown in the bottom left of Fig. 1. This
is achieved by converting the fisheye image feed from the
360 camera to an equirectangular image feed, which is then
broadcast through a User Datagram Protocol (UDP) stream
that the client-side browser can render into a spherical mesh
through javascript. The use of UDP over Transmission Control
Protocol (TCP) is preferable as it allows multiple clients to
access the image feed simultaneously without significantly
increasing the processing load on the server-side computer.
The equirectangular image being rendered on a per client basis
is also intentional to allow each client to retain their own
individual view of the 360 image without having to share a
perspective with other clients.

Visualisation of sensor data and the robot state is also
crucial for a telepresence system, which an implementation
of can be seen in the top of Fig. 1. The two views are
generated using a virtual camera within RViz through the use
of the rviz virtual camera plugin. The plugin only requires the
desired intrinsic camera parameters and a reference transform
in Robot Operating System (ROS) [2], allowing easy con-
figuration for different robotic platforms and vehicles. These
images are mainly used for displaying the waypoint markers,
pointclouds, or octomaps [1] in our particular implementation.
However any visualisation available in RViz is also available
to be displayed if required. The generated image feed is then
passed through to the web interface by having rosbridge re-
publish the images to a websocket using TCP, and subscribed
to by the client browser using roslibjs.

III. REMOTE CONTROL OF ROBOT

Rosbridge and roslibjs discussed in the previous section
is also used in the opposite direction of communication for
sending commands from the client to the AUV. The top down
view in the top left of Fig. 1 also acts as an interface for
sending waypoints. The location of a click on the html element
is converted into coordinates in the base link frame in a node
running on the server computer, which is then sent to the AUV
pilot for conversion into the navigation frame and execution of
the waypoint. The autonomous pilot checks the waypoint and
plans a safe route with collision avoidance enabled, while also
choosing the best orientation for keeping trackable features in
view for the visual Simultaneous Localisation And Mapping
(SLAM) [4] that is used in the autonomy system [3]. The

6

https://doi.org/10.31256/Lx2Pn5L



Fig. 1. The web interface as seen by the operator.

AUV is equipped with a 5 degrees of freedom manipulator1

that can be controlled using labelled preset joint positions
and gripper states which are selected using the buttons in the
web interface, once again through rosbridge to communicate
with the ROS driver. Although high latency connections are
relatively harmless due to the autonomous system ensuring
collision avoidance and station keeping, Husarnet is used to
simplify and secure the connection between the server and
the AUV. In addition, this allows the server to be located in
a central location with good connectivity while the AUV is
in a remote location without sacrificing low latency connec-
tions (approximately 100-200ms delay in most situations). A
full web stack is implemented with SQL database and php
serverside operations to authenticate and control access rights
to the ability to control the AUV on a per client basis. With
multiple access levels it is possible to give the majority of
clients access to components such as 360 camera view, while
a limited number of select clients get a TCP connections to the
AUV for monitoring and control. By restricting the number of
TCP connections to the system the bandwidth and computing
power usage is kept to a minimum. The final network structure
of the overall system can be seen in Fig. 2.

IV. SYSTEM EVALUATION

The web interface was demonstrated during the Robot
Lablive 2021 & 2022 under Roboquarium with a BlueROV2

in a wave tank (approximately 12×10×2.5 metres) at Heriot-
Watt University. The BlueROV is equipped with a custom
payload containing stereo cameras and computational power
to enable SLAM and autonomous operations, hence enabling
it to operate as an AUV [3]. An additional skid is attached
to house the 360 camera and the manipulator as seen in
Fig. 3 During the demonstration, there were up to 20 clients
connected to our system simultaneously, and a select few were
given the access rights to control the AUV directly from their
smart devices remotely. The demo lasted for 4 sessions each
for up to 25 minutes per session, with a total of 8 unique
operators over the course of the demonstration. Each operator
was tasked with and was successful in finding the hidden

1https://blueprintlab.com/products/manipulators/reach-alpha/
2https://bluerobotics.com/store/rov/bluerov2/

Fig. 2. Network structure used for the overall system.

Fig. 3. AUV used for demonstration of system, a BlueRov2 heavy with an
additional skid for the SLAM system and another for the 360 camera plus
reach alpha manipulator.

object around the structure in the wave tank by controlling the
AUV using the web interface. For future work we are looking
into deploying and testing the system on different robots, such
as the Boston Dynamics’ SPOT robot, as well as integrating
additional functionalities such as predefined waypoint control
to turn the system into a truly platform-agnostic solution.

REFERENCES

[1] A. Hornung, K. Wurm, M. Bennewitzm, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[2] M. Quigley, et al., “ROS : an open-source Robot Operating System,”
ICRA Workshop on Open Source Software 2009.

[3] J. Scharff Willners, et al., “From market-ready ROVs to low-cost AUVs,”
IEEE Oceans 2021.

[4] S. Xu, , et al., “Underwater Visual Acoustic SLAM with Extrinsic
Calibration,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2021.

[5] I. Rekleitis, G. Dudek, Y. Schoueri, P. Giguere, and J. Sattar, “Telep-
resence across the ocean,” CRV 2010 - 7th Canadian Conference on
Computer and Robot Vision, 2010.

7


