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Abstract—In this paper, we describe how an autonomy engine
can work together with an operator to perform human-machine
collaborative inspection of offshore structures using shared au-
tonomy. The approach is driven by the robot’s autonomy, which
can make suggestions of what the autonomy engine considers
to be desirable actions to fulfil a mission. The operator can at
any time inject its own action, choose from the robot’s generated
suggestions or allow the robot to continue fully autonomously
until the next user input. The approach removes the need
for constant monitoring and can enable a single operator to
control multiple vehicles at once, as the robot will ensure
safe and collision-free operation while performing actions. The
approach has been tested in various underwater environments
with successful results, including offshore wind turbines.

Index Terms—Marine robotics, autonomy, mapping, naviga-
tion, human-robot interaction

I. INTRODUCTION

The maritime domain is a treacherous environment, the con-
tinuous increasing pressure while descending into the depths
of the ocean makes it an undesirable and dangerous place for
humans to operate it. Due to this and to the growing expansion
of offshore renewable energy infrastructure such as wind
turbines — Remote Operated Vehicles (ROVs) and autonomous
underwater vehicles (AUVs) are seeing more usage every year.
These vehicles are getting increased capabilities in terms of
autonomy, duration, and perception efc. However, for many
objectives such as inspection of assets including harbour walls,
ship hulls and wind turbine foundations — most of the work
is still carried out using human operators controlling the ROV
with very limited, if any, autonomy involved. In this paper, we
present a system that can relieve the operator of much work,
by instead of controlling the robot — working together with
it to accomplish a mission by using shared autonomy. This
means, that the robot can operate completely independently
without input from an operator while displaying actions that
would be beneficial for completing the mission. The operator
can at any point order the robot to choose a different action or
to do a completely different, operator-defined action instead.
This way the operator does not need to focus on just a
single robot but can be placed onshore, controlling multiple
platforms simultaneously as the low-level control and planning
are handled internally by the robot.

The paper shows, to our knowledge, the first application of
shared autonomy with fully autonomous capabilities used for
marine robots exploring and inspecting offshore assets.

Fig. 1. An example of an instance showing the suggested actions as green
models of the vehicle. The environment is shown as an octomap, with the
bright green voxels representing the frontier. One suggested action shows the
simulated sensor as blue rays. The yellow box is the local region for sampling,
where the green arrows are evaluated - the green vehicle models are interactive
actions that the operator can select to go to at any point. The scenario is from
an offshore inspection of a wind turbine.

II. SHARED AUTONOMY

The autonomy system presented in this paper has the
objective to explore an unknown structure. The approach is
based on using an next-best-view (NBV) [1] selection process
with the current map of the environment represented as an
octomap [2]. The octomap is a discrete representation using
voxels. In our implementation of a voxel can be marked
as occupied, empty, unknown or as a frontier. The frontier
represent the boundary between the occupied and what is yet
to be explored (unknown). The frontier defines where new
information can be obtained about the environment. Using
this map, we simulate the robot’s sensing capabilities at
multiple viewpoints (a viewpoint is a potential pose along
with the simulated perception sensor’s data) with 3 different
approaches: 1) randomly sampled viewpoints in the region
around the robot for a local position, 2) the boundary of the
occupied map, enlarged by the maximum sensing distance as
global viewpoints and 3) we cluster the frontier voxels and
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Fig. 2.

An ROV equipped with AUIP mounted below.

estimate the normal from the clusters’ centres. At a user-
defined distance along this normal a viewpoint is generated
with an orientation facing towards the cluster centre. These
approaches of defining viewpoints give us 3 sets of viewpoints.
Each set is evaluated to generate a utility score for each
viewpoint. The utility score (seen in eq. (1)) is based on a
weighted (w) sum of 5 individual scores (each score (u) is in
the range [0,1]); 1) the number of frontier voxel seen in the
simulated sensor, 2) the number of occupied voxel seen, 3)
the distance from the current position, 4) the distance from the
closest previous visited position and 5) the difference between
optimal sensing range and closest distance to an occupied
voxel in the field of view. Each individual score is normalised
to the range and is then multiplied by a weight. The weights
are normalised, and hence the final utility is in the range [0, 1],
as in eq. (2).
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The n viewpoints for each set with the highest utility score
are presented as potential actions for the robot to take. The
approach is similar to NBV, but instead of selecting the highest
scoring viewpoint as the next waypoint, it proposes a set of
actions. If no action is selected by the operator within a time
limit, the robot will switch to fully autonomous mode and
move to the highest scoring viewpoint. While in the fully
autonomous mode, it will continue to generate suggestions
for the operator to select, hence at any given time the operator
can select an option to override the current action of the robot
and switch back to shared autonomy mode. The sequence:
generate suggestion - select suggestion (either autonomously
or from the operator) is repeated until the operator decides that
the mission is finished or until the autonomy engine cannot
provide any suggestions that are deemed to yield enough new
information about the environment to continue the exploration.
The decision making for the autonomy is based on a behaviour
tree [3] and the implementation is using Robot Operating
System (ROS) [4].

III. EXPERIMENTAL EVALUATION

The system has been deployed in various scenarios, in-
cluding a tank, a quarry and an offshore wind farm. The
presented experimental evaluation in this paper will focus
on the exploration of a wind turbine foundation using a

Fig. 3. The shared autonomy system successfully achieving complete visual
coverage of a wind turbine foundation in simulation.

Saab Seaeye Falcon equipped with AUIP. AUIP is a custom
payload containing stereo camera system, inertial sensors and
additional computational power [5]. The ROV can be seen
in Fig. 2. The windfarm is located in the North Sea, which
has strong tidal currents, as such the operation was limited
to the region behind the structure which had more shelter
from the current. An example of how the system sees the
environment and presents suggestions to the operator can be
seen in Fig. 1. The inspected structure is gravity-based and
sits at a depth of roughly 45 metres. The shared autonomy
helped the operator to focus the exploration at regions which
were feasible due to the current, as a fully autonomous frontier
based exploration approach would go around the structure to
complete the inspection, which would not have been possible
with the conditions during the trials. To show the system
in operation when not constrained by the tidal current, we
simulate it using UUV Simulator [6]. In Fig. 3 it can be seen
how the system successfully achieves full sensor coverage the
structure.
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