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Abstract—Early literacy and language skills are a significant
precursor to children’s later educational success. Using social
robots as a learning companion is one method to augment efforts
to support this aim. SPARC has been shown as a useful way to
combine reinforcement learning with human experts to reduce
the state search space and for human experts to intervene before
any negative reward actions take place, however human expertise
is not consistent. In this paper we investigate if SPARC can be
counter-useful as expertise levels decline. Results from the study
suggest that once a skill level below 90% of an expert is breached,
alternative LfD methods maybe more suitable.

I. INTRODUCTION

Early literacy and language skills are a significant precursor
to children’s later educational success. High quality pre-
school programs that provide social interaction, alphabetic
and vocabulary knowledge can prevent academic failure in
later years [1]. Social robots as learning companions may
provide an opportunity to augment these efforts. Learning
from Demonstration (LfD) techniques help robots to achieve
this in complex social environments. However, the lack of
real time control of the robot during LfD training where
social robots are asked to perform tasks such as teaching or
care giving, iterating through potential states and actions to
identify a suitable policy, may be sub-optimal or even harmful
[2]. Wizard-of-Oz (WoZ) [3] and Supervised Progressively
Autonomous Robot Competencies (SPARC) [4] are both well
known strategies to mitigate this by providing expert input at
each stage of the state-action training iteration. However, these
approaches do not take into account sub-optimal expert teacher
performance. Here, we investigate a sub-optimal strategy using
a modified SPARC algorithm, SUB-SPARC, to identify the
impact on policy convergence when expert teachers have a
variation in skill level.

II. BACKGROUND

Previous research in planning approaches where control
may switch back and forth between a human teleoperator
and autonomous control are well surveyed [5]. However, few
works utilising sub-optimal models of performance are avail-
able. Rigter et al. [6] employing a Multi-Arm Bandit (MAB)
problem, considers episodic problems that lead to binary
outcomes. They assume there is a cost for asking the human,
and a cost for failing the episode. Iterative algorithms, such as

1This work was supported by the Engineering and Physical Sciences
Research Council [EP/S023917/1]

DAgger [7], retrieves expert actions from the supervisor in all
encountered states and aggregates the revised state-action pairs
into the training data for later usage. Self-Imitation Learning
by Planning (SILP) [8], an extension of DAgger, proposes a
method to assist in reinforcement learning in motion planning
tasks, while minimising extra computational burden on the
trainer. Deschuyteneer [9] extends this work, and builds on
SPARC to introduce several updates; Monte Carlo Update
(QMC-SPARC), SPARC with Hindsight Experience Replay
(HER-SPARC) and DQN (Deep Q-Learning) with SPARC.
Sub-optimal teaching is also introduced using QMC-SPARC
by replacing expert teacher guidance by a random action rate
ϕ where 0 ≤ ϕ ≤ 1. However, these studies do not address the
challenge of a bounded skill level nor compare to a baseline
model. This investigation aims to address this gap using a
modified SPARC algorithm where a teacher is of bounded
quality ϕ where, α ≤ ϕ ≤ β. This study aims to further
the understanding that sub-optimal teaching may have on LfD
policy generation.

III. METHOD

a) Experiment Design: A desktop grid world simulation
utilising SPARC as a base LfD model was used. Q-Learning
was completed on the grid-world environment to derive a best
practice state-action pair, Q(s, a), for every index position.
The derived policy π was reviewed and substituted as an
expert human teacher to allow the expert human intervention
process to be automated. The derived Q-learning policy for the
environment provided a baseline for comparison with, WoZ,
SPARC original, In Real Life Person (IRLP), and the new
sub optimal SPARC algorithm, known as SUB-SPARC going
forwards. Learning was completed over 50 episodes.

b) Environment: A three row by four column grid world
was instantiated as the environment. Index position [2,3] was
the goal state with a reward of +1. Index position [1,3] was a
failure state with a reward of -1. Index position [1,1] was also
a negative reward position of -1. This position was created to
force a maze like feature when traversing the grid world.

c) Algorithm: The SUB-SPARC algorithm (Algorithm
1), was a modified extension of SPARC, except rather than
query a policy from a perfect Q-learning policy π that mimics
the expert teacher, it utilised a random number ϕ where ϕ is
α ≤ ϕ ≤ β. Both lower and upper bounds were defined to
enable a skill level range to be assigned.
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Algorithm 1: Algorithm used in SUB-SPARC

while learning do
a = action with the highest Q(s, a) value look at

location used with a;
while query expert teacher policy π do

ϕ = random value;
if α ≤ ϕ ≤ β then

a = random assigned action, r = -0.05;
else

a = expert policy assigned action;
reward, r = 0.05;

end
execute a, and transition to s′Q(s, a) ←− Q(st, at) +
α (rt+1 + γ (maxa Q(st, a)) - Q(st, at))

end
end

IV. RESULTS AND DISCUSSION

Figure 1 shows three comparative learning algorithms and
Q-Learning used as a baseline for learning performance. The
fewer actions an algorithm requires to achieve a high stable re-
ward, the better the learning from demonstration performance.

Fig. 1. Comparison of performance of LfD methods plotted against amount of
actions taken during training and associated rewards per episode received. The
fewer actions an algorithm requires to achieve a high stable reward the better.
An In Real Life Person (IRLP) is also shown to provide further comparison.

Figure 2 shows SUB-SPARC set at varying teacher expertise
levels with 0% being expert and 100% fully random actions.
Utilising a static start point in the grid-world environment
meant that once an expert policy was introduced this was
repeated for every episode. This yielded the fastest learning
rate in the fewest steps possible out performing the Q-Learn
process. SUB-SPARC achieved comparative results to SPARC
between 0−7% error rate. Between 7%−10% error rate SUB-
SPARC achieved equivalent results to the Q-Learn baseline.
Once SUB-SPARC had exceeded a 20% error rate, it required
over five times more actions to complete an episode compared
to Q-Learn baseline. An expert level below 50% did not
return any rewards greater than 0, which demonstrates that
minimal learning took place. This suggests that a high quality
of consistent human expert interaction during LfD is important
to maintain the benefits of SPARC.

Fig. 2. Comparison of performance of the SUB-SPARC algorithm across
varying teacher expertise levels (error rate) measured in %. 0% being expert
and 100% being non expert (fully randomised actions within the grid-world).
Shorter plots with higher rewards, indicate that the shorter trials achieve faster
success, and termination of the episode.

V. SUMMARY AND FUTURE WORK

The findings of the study suggest that an expertise level be-
low 90% performs worse than the baseline Q-Learn algorithm
in a simple grid-world environment. This supports previous
work by Deschuyteneer. One limitation of the SUB-SPARC
model is the simplified exploration strategy using a static
starting point, as well the low level of optimisation for next
step selection other than a simple randomised action. Further
work investigating the advantages of continually degrading
skill levels through each episode of the learning process could
more accurately reflect actual human performance over time.
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