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Abstract—Current deep learning approaches used by robotic
grasping systems for predicting multiple valid grasps across
various objects from images have achieved great results, but
often stem from object detectors that were originally designed for
predicting horizontal bounding boxes. Since 2D grasp poses are
more naturally represented by oriented bounding boxes, in this
paper, we explore the suitability of three top-performing rotated
object detectors as they are composed of modules tailored for
encoding rotated object features more precisely. The performance
of the oriented detectors is compared against an effective grasp
detection model architecture from literature on two publicly
available grasping datasets. Results show that oriented detectors
obtained comparable grasp accuracy scores on both datasets,
whilst being more capable of producing confident and diverse
sets of grasps. Code is available at https://github.com/valerija-
h/exploring rotated object detection models.

Index Terms—Grasping, Deep Learning for Robotics, Percep-
tion for Grasping, Computer Vision for Automation

I. INTRODUCTION

Over the years, deep learning models have enabled antipodal
robotic grasping systems to infer stable grasps across various
objects in their environment, permitting them to perform assis-
tive or industrial tasks such as binning, sorting and assembling.
Techniques that allow such systems to perform rapid yet stable
grasps on a diverse set of objects without an object model in
unstructured environments remain an active area in research.

Similar to the notation of a bounding box b = (x, y, w, h),
a 2D grasp pose can be represented as a grasp rectangle g =
(x, y, w, h, θ), where (x, y) is the centre point of the gripper,
w, h is the gripper opening and size respectively and θ denotes
the orientation of the gripper w.r.t. to the horizontal axis (Fig.
Ia). Using such notation, one effective approach from literature
for training a multi-object grasp detection model is by using a
standard object detector (e.g. Faster R-CNN [1]), and replacing
the object classes it predicts with an orientation class r [2],
[3]. Due to the symmetry of the grippers, values of orientation
θ lie in the range [-π2 ,

π
2 ] and can be discretized into N classes

s.t. the set of possible orientation classes is R = {r1, ..., rN}
with an additional class c denoting an invalid grasp.

More recently, researchers in Computer Vision have been
challenged with the task of rotated object detection involving
precisely detecting vehicles from aerial images resulting in a
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Fig. 1. (a) Top left illustrates an example of a grasp rectangle on an object.
(b) Top right shows a sample RGB image from the Cornell dataset [7] with
hand-annotated grasp rectangles. (c) Bottom left shows predictions from the
baseline model. (d) Bottom right shows the predictions from the Oriented
R-CNN [6] model. Grasp predictions with confidence scores > 0.3 are shown
where the blue grasps have the highest confidence.

rise of detector models tailored for predicting oriented bound-
ing boxes. The S2A-Net [4] is a single-shot alignment network
that aligns deep convolutional features to rotated anchors.
ReDet [5] has the ability to encode both rotation equivariant
and invariant features. The Oriented R-CNN [6] is a two-
stage oriented detector that uses an oriented Region Proposal
Network (RPN) to generate quality oriented proposals.

Since standard object detectors used for grasp detection
were originally intended for predicting horizontal bounding
boxes, this paper seeks to explore whether recent oriented
detectors would yield more precise grasps as they are tailored
to encode rotated object features more accurately. Our key
contribution is to compare the performance of three oriented
detectors to a baseline grasp detection model for predicting
suitable grasp rectangles on objects from input RG-D images.
The baseline model will be built from a Faster R-CNN
using common techniques found in grasp detection literature.
Two publicly available datasets (Cornell [7] and OCID [2])
containing depth and RGB images of diverse objects annotated
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with multiple grasps will be used for training and evaluation.

II. METHODOLOGY

Each dataset was pre-processed into its required format and
split image-wise into 80% training and 20% testing samples,
where 10% of the training samples were used for validation
and a seed value was set to ensure reproducibility. Images in
the Cornell and OCID dataset were cropped to a size of 315×
315px and 590 × 460px respectively to remove unnecessary
background noise or objects.

The baseline model was built and trained in PyTorch using
a pre-trained Faster R-CNN, whereas the rotated object mod-
els were implemented using MMRotate [8], an open-source
toolbox based on PyTorch. Each model was trained on RG-
D images for a maximum of 5 epochs using their respective
losses on an NVIDIA GeForce RTX 3070 with CUDA 11.3.
An Adam optimizer with an initial learning rate of 0.0001 was
used for training as well as a training batch size of 2. Random
horizontal and vertical flips with a trigger rate of 25% were
also used in the training pipelines.

III. EVALUATION

Similar to previous literature [2], [3], the rectangle metric
is used to calculate the grasp accuracy of each model on both
datasets. The metric classifies a predicted grasp rectangle gp
as valid when evaluated against a ground truth grasp rectangle
ggt if both of the conditions below are met;

• The angle difference between gp and ggt is within 30◦.
• The Intersection over Union (IoU) score between gp and

ggt is greater than 25%:

IoU(gp, ggt) =
|gp ∩ ggt|
|gp ∪ ggt|

> 0.25 (1)

The predicted grasp with the highest confidence score is
chosen for calculating the grasp accuracy.

IV. RESULTS

Tables I and II report the grasp accuracy and average
inference speed of each model on the Cornell and OCID
datasets respectively. Apart from S2A-Net, both tables show
that all models achieved comparable grasp accuracy scores.
The baseline model had the highest inference speed in the
Cornell dataset which then dropped much more than the other
models in the OCID dataset. This could be attributed to the
fact that the OCID dataset has multi-object scenes whereas
the Cornell dataset has single object scenes, which could
suggest that oriented detectors are more efficient in multi-
object scenes.

As depicted in Fig. Ic-d, qualitative results from the Cornell
dataset show that the baseline model often identifies less
diverse grasps on objects. Its predicted grasps also have lower
confidence scores with riskier stability as the bounds of the
grasp rectangle would sometimes collide with the object itself.
In fact, the average confidence score of the baseline’s valid
grasps in the Cornell dataset is 38%, whereas the rotated
object detectors have an average confidence score above 90%

TABLE I
COMPARISON OF MODEL PERFORMANCE ON THE CORNELL DATASET.

Model Grasp Accuracy (%) Speed (FPS)
Baseline 96.61 18.1
Oriented R-CNN [6] 97.18 13.1
ReDet [5] 94.35 10.4
S2A-Net [4] 92.09 13.2

TABLE II
COMPARISON OF MODEL PERFORMANCE ON THE OCID DATASET.

Model Grasp Accuracy (%) Speed (FPS)
Baseline 97.73 13.9
Oriented R-CNN [6] 97.17 14.3
ReDet [5] 98.58 11.5
S2A-Net [4] 91.50 14.4

in both datasets. However, in the OCID dataset, the average
confidence score of the baseline’s valid grasps increases to
84%. Despite this, when inspecting predicted grasps of each
model that obtained a confidence score above 30% on both
datasets, the baseline model would very often not provide
any suitable grasps on certain objects in both single-object
and multiple-object settings making it difficult to determine a
confidence threshold to use such that only quality grasps are
considered.

V. CONCLUSION

This paper explores the suitability of rotated object detectors
for detecting 2D grasp poses from RG-D images. The models
are compared to a baseline grasp detection model based on
a traditional object detector model on two publicly available
datasets. Results show that all models achieve comparable
grasp accuracy on both datasets, but rotated object detectors
appear to provide more confident and diverse stable grasps,
especially in the presence of multi-object scenes. Future work
involves evaluating these models in real-world experiments
centred around grasping unseen objects using a robotic arm.
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