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Abstract—The application of convolutional neural networks
(CNNs) to challenging visual recognition tasks has been shown to
be highly effective and robust compared to traditional machine
vision techniques. The recent development of small, powerful
GPUs has enabled embedded systems to incorporate real-time,
CNN-based, visual inference. Agriculture is a domain where this
technology could be hugely advantageous. One such application
within agriculture is precision spraying where only weeds are
targeted with herbicide. This approach promises weed control
with significant economic and environmental benefits from re-
duced herbicide usage. While existing research has validated that
CNN-based vision methods can accurately discern between weeds
and crops, this paper explores how such detections can be used to
actuate a prototype precision sprayer that incorporates a CNN-
based weed detection system and validates spraying performance
in a simplified scenario.

I. INTRODUCTION

Weeds compete with crops for light, water and nutrients,
so weed control is a major concern for farmers. Broadcast
spraying, the mainstream approach to weed control, involves
spraying an entire field with a herbicide which kills weeds
but does not affect crops. In contrast, precision spraying aims
to locate and spray only the weeds. This enables weeds
to be controlled while dramatically reducing the amount of
herbicide required which is beneficial both economically and
environmentally.

II. RELATED WORK

Some early research into selective spraying focused on
developing systems to spray weeds before crops had been
drilled [1]. This meant detection systems merely had to
distinguish between soil and plants. There are now commercial
examples of systems that can selectively spray areas with
no crops such as John Deere’s See & Spray Select sprayer
[2]. However, more sophisticated detection techniques are
required to discern weeds from crops. Early investigations
into weed detection used hand-crafted techniques discriminate
weeds from crops [3]. More recently, CNNs have been applied
to the problem of weed detection and have been shown to
outperform methods using hand-crafted features in weed de-
tection tasks [4]. In some studies, CNN-based weed detection
was deployed onto embedded hardware including a Raspberry
Pi [5] and an Nvidia Jetson TX2 [6], [7]. Research aimed at
incorporating embedded detection technology into a prototype
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precision sprayer to spray weeds in real-time is limited. In [8],
weeds were mapped in advance and a precision sprayer,
equipped with an RTK–GPS, could then localise the weeds. A
drop-on-demand micro-jet sprayer was developed in [9] which
detected weeds using colour, shape and texture features and
an SVM classifier. They demonstrated the efficacy in a field
test by showing a reduction weed coverage, proxied via a
reduction in excess greeness, before and after spraying. In [10],
a prototype sprayer was proposed, ResNet- and MobileNet-
based detection methods were investigated, and deployed on
a embedded PC (Raspberry Pi 4 with Intel Neural Computing
stick 2). However, no data on the sprayer’s performance was
published. The work presented here proposes an end-to-end
spraying system, explores how CNN-based object detections
can be used to actuate sprayer nozzles in real-time, and
validates the performance in a simplified spraying scenario.

III. METHODOLOGY

An experiment was conducted using a prototype sprayer,
shown in Figure 1a, comprised of a Clearpath Husky equipped
with a Realsense camera facing down to capture a video
stream of the ground ahead of the robot. The husky tows an
EnduraMaxx sprayer, filled with water, and fitted with three
sprayer nozzles; however, in this experiment we only use the
middle nozzle (Arag F110).

A YOLOv5 (CNN) object detection model was trained to
detect plastic weeds and crops in the image and circumscribe
them using a bounding box. For training, a dataset of labelled
images of plastic weeds and crops was divided to create a
training set containing 2697 images and a validation set con-
taining 300 images. The model was deployed on an NVIDIA
GeForce RTX 3060 Laptop GPU, mounted on the robot, and
works as follows: in each frame, crop and weed bounding
boxes are detected, they are then fed into a SORT algorithm
[11] to associate bounding boxes between frames and track
individual plants frame-to-frame. Figure 1b shows tracked
weeds and crops with their associated IDs.
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Fig. 2: Measurement procedure
From a given frame, with pixel resolution 1280x720, we

can estimate the distance from a detected weed to the spray
nozzle at the time the frame was captured. We take the weed’s
bounding box in the image given by xmin, xmax, ymin, ymax.
In this case, the vehicle is moving in the x-direction, and
xmin is the edge of the bounding box nearest the sprayer
so this is where we aim to start spraying. Since we assume
that the centre of the frame represents the area directly below
the camera lens, we take the distance from this point to the
centre of the image in pixels: xmin − 640 and convert it from
pixels into metres. We established empirically that our camera
covers an area of size 1.05x0.59m so the ratio R = 1.05/1280
is used to convert pixels into metres. The distance from the
centre of the camera lens to the spray nozzle in metres is
given by S. Therefore, the distance of the weed from the spray
nozzle is estimated to be D = S +R(xmin − 640). The pose
of the robot at the time the image was taken, obtained from the
wheel odometry, is Pt. Assuming the sprayer moves forward
in a straight line and accounting for a 0.02m buffer, the pose
where the robot should start spraying is P + D − 0.02. The
estimated pose is updated each time that a weed is detected
in a frame.

In order to calculate the length of time to spray a tracked
weed, the bounding box with the largest width from all the
frames where that weed appears Bmax is used. The length
to spray is RBmax + 0.02 after converting from pixels to
metres and accounting for the 0.02 buffer the other side of
the weed. Based on the speed the sprayer (obtained from the
wheel odometry) when spraying commences, V , the length of
time the sprayer should remain on is (RBmax + 0.02)/V .

In order to test the accuracy of the sprayer, a simplified
model of weed spraying was set up. Two varieties of artificial
plants, one to represent crops and the other to represent weeds,
were lined up on A1 sheets of papers to resemble a crop row.
The distance of each weed from the nozzle at the start was
measured. The sprayer was tested by driving in a straight line
for 5.2m at approximately 0.32m/s over the crops and weeds.
Figure 2 shows location and width of the resulting wet patches
on the paper were measured.

IV. RESULTS

The locations of the wet patches relative to the positions of
the weeds are plotted in Figure 3. While each of the weeds was
fully circumscribed by the patch, the first and last weeds are
not centrally located in the patch. Since they are to the left of

Fig. 3: Results
the patch, this suggests the nozzle turned on slightly too late.
Factors that could influence this include accumulated error in
the wheel odometry reading and latency in the actuation of
the spray nozzles. Addressing these factors, could enable the
0.02m buffer either side of the target area to be reduced which
would further reduce area sprayed and thus herbicide usage.

V. CONCLUSIONS

This work demonstrates how a CNN-based detection model
can be run in real-time on an embedded system to enable
accurate precision spraying. Additionally, by using a simplified
weed spraying set-up, its accuracy can be precisely measured.
By focusing on when to turn a single spray nozzle on and
off, this work investigates precision spraying along a single
dimension. In future work, a system with multiple nozzles
of varying precision and density could be used to investigate
how to further enhance the precision. Additionally, work that
more precisely quantifies the area sprayed, taking into account
the shape of the patches and the spray deposition across target
weeds, could give insights into the potential efficacy of various
precision spray strategies.

REFERENCES

[1] J. P. Underwood, M. Calleija, Z. Taylor, C. Hung, J. Nieto, R. Fitch,
and S. Sukkarieh, “Real-time target detection and steerable spray for
vegetable crops,” in ICRA: Robotics in Agriculture Workshop, 2015.

[2] “John Deere See & Spray Select,” https://www.deere.com/en/news/all-
news/2021mar02-john-deere-launches-see-and-spray-select/, Mar 2021.

[3] A. Bakhshipour, A. Jafari, S. M. Nassiri, and D. Zare, “Weed seg-
mentation using texture features extracted from wavelet sub-images,”
Biosystems Engineering, vol. 157, 2017.

[4] A. dos Santos Ferreira, D. Matte Freitas, G. Gonçalves da Silva,
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