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Abstract—Bio-inspired controllers may help robots better
adapt to dynamic and unpredictable environments. In this paper,
we present work in progress towards developing an automated
tool for tracking and analysis of fish trajectories. These trajec-
tories will be used to develop a bio-inspired robot controller
through learning by demonstration paradigm.

Index Terms—bio-inspired robot controller, deeplabcut, fish
tracking, learning by demonstration

I. INTRODUCTION

Learning by Demonstration (LbD), whereby a teacher
guides a robot to acquire new skills without explicit program-
ming, is a powerful paradigm to improve robots’ autonomy
and performance [1]. While previous LbD research exclusively
featuring humans as the demonstrator (e.g., [2]), very few
attempts have been made to learn from other animals in an
automated fashion, although many studies have shown that
controllers inspired from non-human animals can help robots
better adapt to dynamic environments (e.g., [3]).

In this project, we work towards developing a concep-
tual framework to enable a robot to learn from a fish, and
present an automatic fish tracking and analysis software. To
demonstrate the utility of the software, we analysed a set
of video recordings obtained from one individual fish (three-
spined stickleback, Gasterosteus aculeatus) across 42 trials.
In these trials, the fish was learning to associate a landmark
with the food chamber in two-choice experiments. We are
hoping that deciphering how fish encode information in this
novel environment will help design new bio-inspired learning
algorithms for robots.

The videos were recorded at 30 FPS and at 720p, and the
duration of the videos varied throughout the trials depending
on how quickly the fish entered the correct food chamber.
From each video, we manually digitised 5 minutes of data at
5 FPS. This data was used to train an artificial neural network
for automatic fish tracking and evaluate its performance.

II. MANUAL TRACKING

A two-dimensional manual tracking program was created
using Python (version 3.7.11) and OpenCV (version 4.2.0).
The program first prompts the user to enter the desired number
of tracking points (along the body) and then allows the user
to go through the video frame-by-frame to manually annotate
these points. The program also has the options of skipping

frames, re-annotating frames and choosing start and stop
frames. The program outputs a .csv file which consists of
frame number, timestamp and x and y coordinates of each
point of interest. In this study, the first author used the manual
tracker to digitise the fish videos. Two points along the head
were chosen: the most anterior point (snout point) and the
middle point between the eyes (i.e., base point). Both points
were used to recover the position and orientation of the fish
relative to the tank, which were then used to estimate the
angular and linear velocity of the fish. The base point was
used to train and evaluate the performance of the automatic
tracker. To evaluate inter-coder reliability, one video (trial 1)
was additionally annotated by a second researcher, and the
agreement between two annotators were measured.

III. AUTOMATED TRACKING

The automatic tracker was created using a DeepLabCut
(DLC) toolbox [4], whereby artificial deep neural network
model was trained using 300 annotated frames from trial 1
over 200,000 iterations. Google Colab was used to train the
network, and evaluate its performance. The performance was
reported as the percentage of frames where the pose estimation
of the DLC network was within 10% of the fish body length,
BL, (3.7 cm). For frames that met the 10% BL threshold, the
distance between actual (manually annotated) and predicted
(by the DLC network) point was also measured.

IV. ANALYSIS OF FISH TRAJECTORIES

The inter-coder reliability was 100% (percentage of frames)
and 0.02 BL (distance). The average performance of the DLC
network was 86±9% and 0.04±0 BL (±standard deviation
of the mean) (Fig. 1a). The DLC network performed best in
trial 4 (97% and 0.03 BL) (Fig. 1b-c) and worst in trial 37
(47% and 0.03 BL) (Fig. 1d-e). In trial 37, the DLC network
often confused the fish with the landmark (stone) which had
a similar shape and colour to the fish (Fig. 1e).

The comparison of fish movements from trial 1 and trial
42 demonstrate that the fish learned to associate the landmark
with the correct food chamber (Fig. 2). In the first trial, it
took the fish 805.6 seconds to find the food (Fig. 2ai) which
was 786.2 seconds longer than trial 42 (Fig. 2bi). In both
trials, fish exhibited a range of angular (-180 and 180 degrees
s−1) and linear velocity (0 - 5 BL s−1) (Fig. 2aii and bii). As
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Fig. 1. Comparison between manual and automated tracking. a. Automatic
tracking performance across fish trials. Video recordings from trials 13 to 16
were corrupted and omitted from the analysis. The performance was evaluated
as the percentage of frames where the error between predicted and actual fish
position was less than 10% of fish body length. Trial 1 (green) was used to
train the DLC network, and trials 2-42 were used to test the model. b. c.
Actual and predicted fish trajectories (black) from trial 4 (blue) for best case
scenario. d. e. Actual and predicted fish trajectories (black) from trial 37 (red)
for worst case scenario.

learning progressed, the fish had a lower tendency to stay near
the walls (i.e., thigmotaxis), and its movements became more
direct (fewer stops) often exhibiting simultaneous turning and
forward movements (Fig. 2aiii and biii).

V. CONCLUSION

We present a work-in-progress automatic tracker for esti-
mating the position of a fish while swimming in a laboratory
setting. The performance of the tracker in unseen trials was
promising but needs to be further improved to provide accurate
results. Our preliminary results from one manually annotated
individual show improved decision making over learning trials
as indicated by the change in fish velocities and trajectories.

VI. LIMITATIONS AND FUTURE WORK

Manual tracking is a laborious and time consuming process
which does not allow continuous fish tracking over extended
periods of time. Automated tracking is quicker but less accu-
rate due to light reflecting off the water, ripples from the filter
(distorting the fish silhouette) and occlusions (e.g., the fish was
partially (or not) visible to the overhead camera while passing
through the doorway or hiding under the plant or the water
filter). In addition, our initial investigation using preliminary
data suggests that the DLC network had poor generalisation
performance when used to analyse videos from other fish.
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Fig. 2. Comparison of fish behaviour before (a) and after learning (b). ai. bi.
The red and green trajectories show incorrect and correct decisions made until
food was found. aii. bii. Fish instantaneous angular velocity (positive values
corresponding to turn right) and linear velocity (positive values corresponding
to forward movement). Grey markers correspond to individual data points. Red
and green markers correspond to individual data points until food was found.
aiii. biii. Distribution of fish actions split into four groups: 1) No action, 2)
Turn, 3) Forward movement and 4) Both movements at the same time.

We are currently working on a new outlier detection and
imputation method to post-process data generated by the
automatic tracker. We are also developing a semi-automated,
human-in-the-loop fish tracking program to combine the best
features from the manual and automated tracking methods.
This will speed the process for collecting fish trajectories and
provide accurate and reliable data to use for researchers. By
collecting more data it will increase the progression towards
developing a bio-inspired robot controller through LbD.
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