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Abstract—Wheelchairs aid people with physical disabilities
by assisting with mobility, thus improving their independence.
Autonomous assistance on wheelchairs are limited to prototypes
that provide ‘smart functionality’, by completing tasks such
as docking or terrain adaption. The biggest constraints are
navigating within dynamic environments, such as the home.

This paper describes the data pipeline to automate the
wheelchair navigation process, from classifying an object, esti-
mating the user’s intention via verbal command (e.g. take me to
the fridge) and navigating towards a goal.

Object locations will be registered within a map whilst contex-
tual meta data is calculated. A combination of object classification
confidence and object instances is used to calculate the uniqueness
of all identifiable objects. Thus, assisting in predicting the user’s
intention. For example, if a “go to the fridge” request is received,
the wheelchair will know that the fridge is located within the
kitchen, and therefore drive to the kitchen and then the fridge.

Results show that utilising contextual data reduces the like-
lihood of false-positive object detections being registered by the
navigation pipeline, thus is more likely to interpret the user
intention more accurately.
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I. INTRODUCTION AND BACKGROUND

Studies show that 40% of wheelchair users with severe
physical disabilities require assistance from carers, friends or
family to navigate around their environment [1]. This empha-
sises the importance of introducing a low-cost, robust sensor
and software framework that is capable of adapting to the
dynamic home environment. We aim to address the challenge
of automating the wheelchair navigation process, providing
further independence to the user by traversing autonomously
towards an intended object.

The platform we use for development is based on a cus-
tomised differential drive, powered wheelchair chassis. An
Arduino Mega is used to interface with the hardware onboard
the wheelchair. The main embedded PC uses the Robotic
Operating System (ROS) to communicate with hardware and
the software stack onboard the wheelchair. The ‘RPLIDAR
A2’ 2D laser scanner, is mounted at the seat height at the
front of the wheelchair. The ZED depth camera provides HD
RGB images and a pointcloud and is mounted above head
height for a person sitting on the wheelchair.

Many recent smart wheelchair prototypes utilise ROS as a
middleware, to provide commonly used navigation and locali-
sation tools [2]–[4]. Our novel vision processing pipeline also

utilises the ROS ecosystem to communicate between the nodes
for calculating user intentions, generating a semantic map, and
storing locations of objects on a navigable topological map.

II. DATA PIPELINE

Due to the absence of sensors onboard the wheelchair to
calculate odometry (such as encoders and IMUs), we use
RTAB-MAP (Real-Time Appearance Based Mapping) [5] to
simultaneously generate a navigable map of the environment
and provide a source of odometry. The ZED software devel-
opment kit is also utilised to calculate visual odometry using
feature extraction and loop-closures. A pointcloud of the en-
vironment is generated to calculate the coordinates of objects.
The LIDAR is a secondary sensor to clean and optimise the
local costmap. The ‘move base’ ROS package utilises the
LIDAR to avoid collisions whilst traversing towards a goal. Its
capability to work in low-light conditions and its wider field
of view compared to that of the camera makes the LIDAR a
safer alternative for avoiding collisions [6].

To detect objects within the environment the Deep Neural
Network (DNN) MobileNetV2 [7] object classification is used,
trained on the Microsoft COCO dataset [8]. MobileNetV2
requires low computational power (designed for running on a
Smart-Phone CPU and interfacing with OpenCV DNN library)
and is effective at classifying objects within cluttered images.
ROS publishes a custom message per camera frame including
the annotated image, object confidence and bounding box size.
The object confidence (between 0 and 1) is output from the
MobileNet (DNN) object recognition node.

To calculate the position of an identified object within a 3D
environment, a pointcloud is utilised to calculate the depth of
the centre pixels of a bounding box. RTAB-MAP generates a
navigable map of 3D coordinates for the wheelchair. Trans-
lating the point coordinates from the camera to the global
map layer occurs using the ROS transform library. Objects
are uniquely identified with an ID and name, a transform is
placed on the corresponding coordinates on the map.

A. Training

The smart wheelchair must be trained once by the operator
when introduced to a new home environment. When entering
a new room, a label must be provided (i.e. kitchen, bedroom,
lounge) (Fig. 2). A ROS transform is generated using the pose

18

https://doi.org/10.31256/Ad3Ko8T



Fig. 1. Object Context Score over time

of the wheelchair and is placed on the global map. All new
objects identified within the room are assigned a room label.

Fig. 2. Top-down view of the home environment including correctly classified
refrigerator objects circled green, with false-positives circled red

B. Calculating context of an object

One of the primary issues within this methodology, is the
presence of false-positive detections classified by the DNN
object detection (e.g. classifying a white wall incorrectly as
a refrigerator). A novel method was devised to overcome
this issue (the ‘Wheelchair Context’ ROS package [9]), by
analysing the context (object score), object confidence (from
the MobileNet (DNN) object recognition node), object weight-
ing (likelihood of object being detected in previous location),
object uniqueness (the total number of objects found in the
home environment). To prevent the object score becoming
too big or small (thus affecting the likelihood of navigating
towards an object), object score is bounded between 0 and 1.

Fig. 1 visualises the change in object score over time (secs)
as the wheelchair traverses between rooms. Three correctly
detected refrigerators (object ID 25, 51 and 52) and three false-
positive object detections (object ID 79, 80 and 82) are plotted.

On revisiting locations, re-detection increases confidence,
with the real objects being reliably re-detected. The result is
false-positives becoming less influential and navigation takes
the user to the intended object.

C. Estimating the user’s intention

Our navigation package consists of three possible navigation
modes, based on how specific the user’s instructions are:

1) No room named, but object name is supplied — based
on all objects within the environment, which object is
most likely the user’s intention?

2) Both room and object names are supplied — list of
potential objects to navigate to is significantly shortened
due to associated rooms.

3) Only the room name is provided — the wheelchair will
navigate to the specified room transform, whilst avoiding
any objects that may be obstructing the goal.

III. CONCLUSION

We have presented an overview of an autonomous
wheelchair capable of creating a semantic map of objects and
rooms, whilst calculating the user’s intention. The method
provides a low-cost solution to reducing the influence of
false-positive DNN object detections in predicting the user’s
intention. Our ‘object-room tag’ vision-only approach provides
the flexibility of operating in either an open plan or distinct
room house. Future work also includes providing customised
approach behaviours for individual objects within the home
(e.g. slowly approaching a table and docking the wheelchair).
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[5] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-
term online operation,” Journal of Field Robotics, vol. 36, 2019.

[6] T. Fearn, F. Labrosse, and P. Shaw, “Wheelchair navigation: Auto-
matically adapting to evolving environments,” in TAROS, pp. 496–500,
Springer, 2019.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[8] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO:
Common Objects in Context,” 2015.

[9] T. Fearn, “Wheelchair Context ROS Package.” https://github.com/fearn-
robotics/wheelchair context, 2022.

19


