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Abstract— This work explored the requirements of accurately

and reliably predicting user intention using a deep learning 

methodology when performing fine-grained movements of the 

human hand. The focus was on combining a feature engineering 

process with the effective capability of deep learning to further 

identify salient characteristics from a biological input signal. 3 

time domain features (root mean square, waveform length, and 

slope sign changes) were extracted from the surface 

electromyography (sEMG) signal of 17 hand and wrist 

movements performed by 40 subjects. The feature  data was 

mapped to 6 sensor bend resistance readings from a CyberGlove 

II system, representing the associated hand kinematic data. 

These sensors were located at specific joints of interest on the 

human hand (the thumb’s metacarpophalangeal joint, the 
proximal interphalangeal joint of each finger, and the 

radiocarpal joint of the wrist). All datasets were taken from 

database 2 of the NinaPro online database repository. A 3-layer 

long short-term memory model with dropout was developed to 

predict the 6 glove sensor readings using a corresponding sEMG 

feature vector as input. Initial results from trials using test data 

from the 40 subjects produce an average mean squared error of 

0.176. This indicates a viable pathway to follow for this 

prediction method of hand movement data, although further 

work is needed to optimize the model and to analyze the data with 

a more detailed set of metrics. 

I. INTRODUCTION

The potential of the electromyography (EMG) signal 

generated by human muscles when performing activity has 

been explored in the myoelectric control of prosthetic devices 

for many decades, particularly in upper limb mechanisms. 

Major advancements in commercial hardware have led to 

instruments capable of intricate mechanical actions. Control 

strategies, however, have been less successful in their 

evolution, now seen as a bottleneck to providing effective 

means of daily life activity for amputees. Use of pattern 

recognition has garnered significant successes in laboratory 

conditions [1] and gradual translation to viable end product 

(www.coaptengineering.com). Much of this has been based on 

the classification methodology, which is still sequential in 

nature, only offering one hand function at a time and thus 

contradictory to the requirement for more fluid, natural 

movement in myoelectric prosthetics [2]. A more promising 

approach is the employment of a simultaneous and 

proportional methodology. Here, the objective is to control 

multiple degrees of freedom (DOFs) using regression, to 

estimate a continuous output value for each DOF. This 

establishes a mapping between EMG input and control output, 
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proving more suitable for intuitive control. Deep learning has 

found many applications when applied to biological data [3]. 

In general, when applied to the problem of hand gesture 

recognition, convolutional neural networks (CNN), long short 

term memory (LSTM), or combinations of the two are 

employed [4], [5], [6]. These follow the classification 

methodology however, with [7] providing the only evidence 

so far of using regression for continuous prediction of hand 

kinematic data. They use an autoencoder (AE) to map two 

kinematic signals via nonlinear regression, for controlling two 

DOFs. This work uses a 3-layer LSTM model to map sEMG 

data for 17 human hand and wrist movements, taken from 40 

subjects. A preprocessing stage where initial sets of features 

are extracted from the sEMG data, is used to provide LSTM 

model input. This is then mapped to 6 glove sensor readings 

representing the corresponding hand kinematic data. 

II. METHOD

A. Preprocessing

Data from 40 intact subjects were downloaded from the

NinaPro project website (http://ninapro.hevs.ch), specifically 

Exercise B’s 17 hand and wrist movements from Database 2. 
The data was initially acquired using 12 Delsys Trigno 

wireless electrodes (Delsys, Inc, www.delsys.com). Eight 

electrodes were attached around the right forearm, at a fixed 

distance from the radio-humeral joint, two were fixed to the 

main activity spots of the anterior and posterior of the forearm, 

and two more placed on the biceps brachii and triceps brachii. 

All movements were repeated 6 times consecutively, each 

lasting approximately 5 seconds, plus a 3-second rest period 

where the subject returned their hand to a rest posture with 

data acquired at a 2 KHz sampling rate [8]. A CyberGlove II 

(www.cyberglovesystems.com) equipped with 22 sensors 

located around the joint positions of the fingers and wrist, was 

used to acquire hand kinematics. The glove uses resistive 

bend-sensing technology providing an 8-bit value (0 to 255) 

proportional to the bend angle for each sensor. Six sensors 

were chosen, representing metacarpophalangeal (MCP) and 

proximal interphalangeal (PIP) joints of interest around the 

thumb and fingers of the right hand, and additionally the wrist 

joint (Table I). This enabled sufficient data capture for all hand 

movements. An in-house MATLAB program separated 

movement repetitions into a matrix of time-ordered sEMG 

voltage data from the electrodes. Each movement’s data was 
split such that repetitions 1, 3, 4, and 6 were allocated to a 
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training set and repetitions 2 and 5 to a test set. Data were 

normalized to have zero mean and unit standard deviation [8]. 

 

 

CYBERGLOVE SENSORS OF INTEREST FOR EXPERIMENT 

Sensor Location 

2 MCP joint of the thumb 

6 PIP joint of the index finger 

9 PIP joint of the middle finger 

13 PIP joint of the ring finger 

17 PIP joint of the pinky finger 

21 Radiocarpal joint of the wrist 

A 256 ms sliding window was employed, as per our 

previous work, to segment the data. The increment was set at 

25 ms to ensure a densely packed array of windows. Three 

time domain (TD) features were chosen based on performance 

in our previous research [11]. The first two are part of the 

prevalent Hudgins set [12] while the third feature is also 

commonly used in sEMG research: 

 Waveform Length (WL) – a simple rolling

calculation of the summation of the absolute

difference between a signal sample xk and its

previous sample xk-1 (equating to ∆xk), for all samples

N in one window:

𝑊 = ∑|Δ 𝑘|𝑁
𝑘−

 Slope Sign Changes (SSC) – a scalar count in terms

of number of times the sEMG signal slope changes

between positive and negative values, based on a

threshold. Three consecutive window samples are

used to check if sample xk is greater or less than its

neighbours (xk-1 and xk+1):

xk > xk-1 and xk > xk+1, or  

xk < xk-1 and xk < xk+1, and 

|xk – xk-1 xk+1| ≥ 0.01V or |xk – xk-1 xk-1| ≥ 0.01V

 Root Mean Square (RMS) – an indicator of average

signal value, cancelling out the negative values by

squaring them to obtain a mean value:

= √  ∑ 𝑘𝑁
𝑘=

Together, these features can provide useful information 

about sEMG signal waveform complexity and frequency, and 

muscle contraction intensity. They were extracted from each 

window, for all 12 electrodes, creating a feature vector vt of 36 

scalar features for one time window t. Corresponding glove 

sensor data was windowed using the same procedure and a 

mean signal feature extracted per window for each sensor. 

These 6 scalar values were appended to the existing feature 

vector vt. For each hand movement, this process yielded a 

time-ordered feature matrix FT,E,G consisting of a set of vt 

feature vectors: 

𝑻, ,  =  ,𝑖 ,𝑖𝐺⋱𝑇,𝑖 𝑇,𝑖𝐺
where e is a single sEMG electrode up to a maximum of E 

electrodes, i represents an extracted feature, G is the total 

number of glove sensors, and T the total number of time 

windows in one hand movement. 

B. LSTM Model

An LSTM network is a type of recurrent neural network

(RNN) existing as a series of states through time, suitable for 

analyzing data of a temporal nature, such as the sEMG signal. 

It utilizes a memory cell consisting of 3 logic gates and a 

persistent memory state, providing more control than a regular 

RNN as to the data flow through the network state per time 

step [13]. Research into LSTM usage in biosignal fields shows 

stacking several LSTM layers offers improved model 

performance [14], capturing more detailed temporal 

information. Initial trials and related work [15] prompted a 

design of 3 layers (Fig. 2). The 36 sEMG TD features were 

used as input to the model, which produced predicted 

kinematic output in the form of 6 glove sensor values, 

representative of the corresponding joint movements. The 

model was configured to evaluate 4 time steps of feature data 

when making a prediction and each LSTM layer was 

configured to have 200 hidden nodes, based on a prior 

optimization investigation that used a subset of subject data. 

After each layer, a dropout layer was added, implementing an 

arbitrary dropout rate of 30% in order to generalize the model 

and reduce the chance of overfitting. A dense, fully-connected 

layer using a tanh activation function completed the model, 

making the actual prediction of the 6 glove sensor outputs. 

(1) 
(2) 

(3) 
Figure 1. Joints of the finger and CyberGlove sensor locations. Red 

circles indicate the selected sensors, used for target kinematic data 

prediction.. Figure created by adapting detail from [9] and [10]. (4)
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The network was trained using the stochastic gradient 

descent optimization algorithm, learning rate of 0.3 with 

momentum of 0.9 applied to the gradient descent operation. 

Training took place over 40 epochs using a batch size of 600. 

All hyperparameters were tuned by conducting an 

optimization process using a 3-fold cross validation grid 

search. 

III. RESULTS

The mean squared error (MSE) was used as a model 
performance estimate. Individual subject’s test data were 
evaluated with the trained LSTM model, predicting the 6 DOFs 
for each hand movement. An average MSE of 0.176 was 
achieved over 40 subjects and plots indicate reasonable DOF 
prediction over the 17 hand and wrist movements (Fig. 3).  

 

A more detailed analysis is required of this preliminary 
work, to provide a clearer indication of model performance. 
Use of additional performance metrics, including Pearson’s 
correlation coefficient, would be applicable. Comparison 
against a benchmark from other research using a regression 
technique or simultaneous and proportional control of multiple 
DOFs is also required. 

IV. CONCLUSION

The experiment performed here shows it is feasible to use 
an LSTM neural network to perform prediction of wrist and 
finger movements with a good degree of accuracy. Combining 
the deep model with a feature engineering phase has proved 
advantageous. Investigating the replacement of this phase with 
a CNN for automated feature extraction is a pertinent next step. 
There is also still room for improvement with further work 
needed to optimize the LSTM model structure and 
hyperparameters, include additional performance 
measurements and more detailed analysis, and compare results 
with related research. 
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Figure 2. LSTM model structure.

Figure 3. Predicted kinematic data (yellow) against ground truth 

glove sensor data (green) of thumb MCP joint (top) and index finger 

PIP joint (bottom) for 17 hand and wrist movements from  test 

dataset of subject 1. 
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