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Abstract— The study of combined task and motion planning

has mostly been concerned with feasibility planning for high-

dimensional, complex manipulation problems. Instead this paper 

gives its attention to optimal planning for low-dimensional 

planning problems and introduces the dynamic, anytime task 

and path planner for mobile robots. The proposed approach 

adopts a multi-tree extension of the T-RRT* algorithm in the 

path planning layer and further introduces dynamic and anytime 

planning components to enable low-level path correction and 

high-level re-planning capabilities when operating in dynamic or 

partially-known environments. Evaluation of the planner against 

existing methods show cost reductions of solution plans while 

remaining computationally efficient, and simulated deployment 

of the planner validates the effectiveness of the dynamic, anytime 

behavior of the proposed approach. 

Keywords—robotics, autonomous systems, task planning, path

planning, combined task and motion planning, dynamic planning 

I. INTRODUCTION

The study of task planning and path planning for 
applications in robotics has largely been conducted in isolation. 
Task planning is carried out using a symbolic representation of 
the world consisting of a finite set of discrete states. In this 
domain, geometric relationships of objects in the world are, in 
general, highly abstracted to reduce the size of the state space. 
Thus task planners are rarely able to consider geometric 
constraints of the planning problem. Path planning (a purely 
geometric motion planning problem [1]) on the other hand 
seeks to find an admissible path in ℝd space to transition a robot
from a start configuration to a goal configuration by exploiting 
the geometric representation of the environment.  While trivial 
problems may be efficiently solved by performing task 
planning in isolation and subsequently calling a path planning 
instance for each movement action, applying the same 
approach to more complex problems may produce sub-optimal 
plans, or in the worst case be unsolvable.  

An emerging concept in literature called combined task and 
motion planning (CTMP) seeks to address this by integrating 
the process of path planning and task planning. The authors in 
[2] proposed a hierarchical approach that interleaves planning
with execution. The FFRob [3] is a CTMP planner that extends
FastForward heuristics used in symbolic planning to robot
motion planning, while [4]  performs CTMP by precomputing
motion graphs and collision tables for a mobile manipulator.
The Task-Motion Kit (TMKit) [5], which addresses
probabilistic completeness and generality, is a general-purpose
framework that interfaces the symbolically-defined task
domain with the geometric relational properties of the motion
domain through a domain semantics layer. These
aforementioned work focus on feasibility planning for high
complexity problems involving object manipulation. However,
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far fewer works have applied CTMP concepts to planning for 
lower-complexity problems consisting of mobile robots. Yet 
CTMP can provide improvements to the optimality of long 
mission plans, or adapt task plans in response to failures or 
perceived dynamic changes to the world. We highlight the 
UP2TA framework [6], which integrates task and path 
planning for applications to exploration mission planning. 
However, UP2TA does not consider general cost spaces in path 
optimisation, nor facilitates dynamic re-planning.  Thus the 
contributions of this work is two-fold: (i) we compare a base 
planner, which integrates task and path planning to enable 
optimal task planning in continuous cost spaces by making use 
of a multi-tree T-RRT* algorithm [7], against UP2TA and a 
planning-in-isolation approach, and (ii) we extend the base 
planner with dynamic, anytime capabilities to enable high-
level re-planning and low-level path corrections in dynamic 
environments. We collectively refer to the proposed planner as 
the Dynamic, Anytime Task and Path Planner (DA-TPP).  

II. PROBLEM DEFINITION

This paper addresses task and path planning (TPP) 
problems for autonomous mobile robots. As a minimum, this 
consists of a robot in an environment containing a set of 
landmarks L. These landmarks represent locations in space 
where a robot must perform some actions. A movement action 
consists of traversing between any pair of landmarks la, lb ∈ L.
A valid planning problem within this domain consists of an 
initial landmark from which the robot starts from, and a set of 
tasks that must be performed at each landmark. These may be 
defined as a discrete action within the planning domain. A goal 
landmark for which the robot must be located at the end of the 
plan may also be specified. For consistency, we assume that the 
robot must begin and end at a root landmark l0, referred to as 
the robot base, throughout this paper.  
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Figure1. The proposed base planner architecture
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III. DA-TPP APPROACH

In DA-TPP, the base planner (Fig. 1) pre-plans all possible 
paths before the execution of a task planner. The resulting path 
costs are then configured into the task planning problem as 
discrete movement action costs. This enables optimal task 
planning as true path plans are considered in the task planning 
phase. Indeed it can be inefficient to run an individual planning 
instance for each possible movement action. This is addressed 
through our previously developed multi-goal path planning 
algorithm based on T-RRT* trees [7], which simultaneously 
and efficiently finds feasible paths between all landmark pairs. 

Given a continuous cost space mapping function, c, from 
which a cost value can be derived for all robot configurations, 
we define the path cost function, cp, of a path σ as a weighted 
sum of integral cost and path length: 

σ = 𝑙 𝜎 𝑎 ∑ (𝜎 𝑘 ) +𝑘=  (1) 

Where n is the number of subdivisions of σ, l() is the path
length and wa and wb are weight factors for c and l(σ), 
respectively. This formulation enables consolidation of both 
the cost function and path length as a weighted sum multi-
objective optimisation problem. When a termination criteria is 
met, the planner returns the best set of paths and corresponding 
costs found for each of these actions (cp = ∞ if no solution is
found). In the interest of anytime planning, we note that a TPP 
solution can be found if all landmarks form a fully-connected 
graph such that any landmark li ∈ L can be reached from every
other landmark lj ∈ L|i≠j by traversing the graph.

The task planning layer employs PDDL representation [8], 
and is solved using the openly available planner Local Planning 
Graphs (LPG-td) [9]. We chose to represent the planning 
problem in PDDL due to its wide acceptance as a standard for 
representing classical symbolic planning problems. This 
enables interchangeable use of other heuristic planners (such 
as Metric-FF [10]) developed for PDDL so long as they are 
compatible with fluents as a minimum requirement.  

A. Anytime extension

Anytime planning supports a request for an initial solution 
after a fixed allotted time, which minimises idle time at the start 
of a task. This is supported by the base planner under the 
condition that sufficient paths are found to form a connected 
graph across all landmarks. Once an initial TPP solution is 
obtained, the path planning layer continues to iterate the path 
planning algorithm while the robot executes the initial solution. 
Suppose that the initial path cost for an action a is cp. Following 
the work in [11], an upper cost bound Cs

+ is defined as: 𝐶+ = − 𝜂 ∙ . (2) 

Where ηa is a constant. When the path planning layer finds
a new path for a with cp < Cs

+, a new instance of task planning 
is called and cp is updated to the new path cost. This mechanism 
guarantees that the task planning layer is called only when a 
guaranteed improvement to an action cost is found.  

When running this anytime planner alongside robot 
execution, it is also necessary to consider the goals that have 
been met thus far. This is addressed by updating the initial state 
of the planning problem at each instance of task planning to 
reflect the next state of the world after executing the current 

action of the latest plan. In this way the robot always commits 
to the first action of each plan.  

B. Dynamic anytime extension

The complete DA-TPP architecture is shown in Fig. 2. The 
key extensions are the local path correction and the global task 
re-planner modules. Each time an obstruction to a currently 
executed path is detected, a local path correction procedure is 
performed to find a new optimal path to the goal configuration. 
The DA-TPP then determines whether an instance of global re-
planning should be called using (3). Letting cp' be the path cost 
of the remaining segments of the original path, a lower cost 
bound is defined as  𝐶− = + 𝜂 ∙ ′ .  (3) 

Where ηd is a constant. When the cost of the corrected path
exceeds Cs

-, global re-planning takes place. This permanently 
updates all planning trees with the detected obstruction, and 
lazily finds a path to the robot’s current location, if it exists, 
from every landmark. A new TPP solution is then produced 
from the updated path plans to generate a new optimal 
sequence of movement actions. The benefits of applying (3) as 
a re-planning condition is briefly discussed in section V. B. 

Accordingly the DA-TPP provides the following 
behaviours in dynamic environments. When minor 
obstructions are encountered, only small adjustments to the 
planned path is required. This, in general, does not affect the 
optimality of the task plan from a high-level perspective. It is 
sufficient then to correct paths locally each time the same 
obstruction is encountered. However, in situations where an 
obstruction causes significant diversion for a particular traverse 
(e.g. from road blockages), the likelihood of the obstruction 
affecting other paths are high and thus re-routing may produce 
new optimal task plans. In these situations it is necessary to 
update the entire plan to maintain optimality.  

IV. PATH PLANNING

The path planning layer of the base planner is implemented 
following the approach described in [7]. Readers are directed 
to this initial work for a detailed description of the multi-tree 
T-RRT* algorithm. This section briefly discusses the dynamic
algorithms for local path correction and global re-planning.

Figure 2. DA-TPP architecture 
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Figure 3. DA-TPP benchmarking results. (a) planning time, (b) overall plan 

cost 

A. Dynamic path correction (local)

The local path re-planner corrects any single path according 
to procedures based on elements of the RRTX algorithm [12]. 
At the start of any movement action, a new tree Tnew is 
generated from two trees T0 and Tg corresponding to the start 
and goal landmarks l0 and lg, respectively. Tnew is rooted at the 
goal configuration qg and consists of all the vertices of T0 and 
Tg rewired to minimise path cost according to the new tree root. 
This step eases the dynamic re-planning procedure as the root 
of the tree does not need to be updated at each time step as the 
robot advances along the path. As the robot traverses along this 
path, new environmental information is used to temporarily 
update the configuration space C. A feasibility check is used to 
determine if the updated configuration space invalidates the 
current path plan. If it does, the algorithm proceeds to update 
the path. Otherwise, the changes to C are discarded. 

The algorithm invalidates all vertices that lie in the collision 
region of new obstacles. All descendant vertices that remain 
valid are then updated as orphans. This closely resembles the 
propagateDescendants function in [12]. Following this, the 
algorithm updates the connecting edges of the tree by iterating 
through a queue of vertices consisting initially of the 
neighbours of orphaned vertices (see reduceInconsistency 
function in [12]). For each of these vertices, the algorithm 
updates the parent of the current vertex, and then runs a 
rewiring procedure on its neighbouring vertices. Any vertices 
that are rewired at this step are then added to the queue. This 
continues until no further improvements can be made. Finally, 
a new path from the tree root to the robot configuration qrob is 
found by attempting to connect qrob to neighbouring vertices.  

B. Dynamic path correction (global)

The global re-planner provides an update to all solutions of 
the path planning layer. When the condition in (3) is met, the 
optimality criteria for the current action-motion sequence may 
no longer hold and a new action-motion sequence must be 
determined by updating the costs of all movement actions. The 
algorithm first updates every tree by invalidating infeasible 
vertices, updating orphaned vertices and cascading a series of 
rewiring, as in section IV-A. New optimal paths between 
landmarks are obtained by finding new connecting vertices 

between corresponding pairs of trees. The set of best paths Σbest

are then updated accordingly. A temporary landmark ltemp is 
then inserted into the TPP problem at qrob. An attempt to find 
an optimal path from each original landmark to ltemp is made by 
testing connections from neighbouring vertices of each tree to 
the root of ltemp. Σbest is then expanded to include these paths.
Indeed the planner may not initially find a feasible path for 
each of these movement actions. However, this does not 
prevent the planner from obtaining a solution by making use of 
the anytime attributes of DA-TPP to find action-motion 
sequences despite certain actions possessing infinite costs. 

V. EXPERIMENTAL EVALUATION

A. Base planner evaluation

The base planner is benchmarked across a number of 
randomly generated cluttered and structured environments. We 
assess the performance of these approaches in 50 × 50, 100 × 
100 and 300 × 300 environments. Note that in these 
experiments the cost function c in (1) for a given configuration 
q is given by c = 1/δ2, where δ is the distance to the nearest 
obstacle. Thus c describes the ‘closeness’ of q to an obstacle.

We compare the performance of the DA-TPP base planner 
with a simple planner consisting of task and path planning in 
isolation (isolated TP) and UP2TA. The isolated TP consists of 
a task planner that solves for an optimal action sequence by 
using the Euclidean distances between landmarks as movement 
action costs. For consistency in comparison, a single instance 
of a bi-directional T-RRT* algorithm is called for each 
movement action to obtain the final action-motion sequence. 
Our implementation of the UP2TA framework employs the 
greedy search algorithm [6] to obtain approximate cost metrics 
for each possible movement action. For consistency, LPG-td is 
then used to solve the task planning problem. An additional 
path planning layer based on Theta* [13] is required to obtain 
true paths for each movement action like in isolated TP.  

Based on the results in Fig. 3, one may observe that the 
UP2TA fails to consider cost spaces and consequently 
performs notably worse than other planners when considering 
total path cost for the same planning instances. In terms of 
scalability, planning time highlights a key deficit of grid-based 
approaches: as the size of the problem increases, its 
performance generally decreases rapidly, as observed for 
environments of size 300x300. In particular, grid-based 
algorithms may become ‘trapped’ in enclosed regions that 
forces the algorithm to search through a large number of 
useless nodes needlessly. Isolated TP scales far better with the 
size of the problem and maintains a low computational cost 
across all trials. However, this approach finds solutions with 
overall costs that are generally greater than the DA-TPP 
approach. This is an expected observation as the task planning 
layer is ill-informed by misleading action costs. Without 
knowing the geometric relationships of objects in the world, 
costly (or even infeasible) movement actions are unknown to 
the symbolic planner.  

In contrast, the DA-TPP consistently finds the lowest cost 
plans in all test cases. Although this sacrifices computational 

(a) 

(b) 
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efficiency, the proposed planner scales well with the size of the 
problem and indeed finds a solution faster than UP2TA in 
almost all cases for 300 × 300 environments. Finally, the 
quality of DA-TPP solutions may be further improved over 
time as a result of anytime planning, as discussed below. 

B. Anytime evaluation

To analyse the anytime component of DA-TPP, the base 
planner was first run until an initial solution was obtained. 
Following the planner description in section III, the planner 
continues to run with ηa set to 0.03. Then, at defined time
instances a new solution is requested from the planner. The 
corresponding overall cost of the task sequence at each of these 
time instances are shown in Fig. 4.    

These planning results show improvements made to the 
overall solution at two levels. The observable decreasing ‘step’ 
behaviour corresponds to changes at the action sequence level. 
Here the planner identifies a new optimal task sequence that 
provides larger quality improvements as a result of higher 
quality paths being found for previously expensive actions. On 
the other hand, more minute improvements to the solution cost 
is attributed to local path quality improvements that do not alter 
the high-level task sequence. This observation provides 
support for the behaviour of the dynamic components of DA-
TPP: small local changes to a path do not, in most cases, 
change the optimality of the task-level action sequence. Hence 
it is unnecessary to re-plan an entire action-motion sequence 
for small local path changes.  

C. Dynamic anytime evaluation

Finally, the complete DA-TPP approach is assessed 
through simulations in the environment shown in Fig. 5, with 
obstacles not known a priori shown in blue. Unlike the 
experiment conducted for anytime evaluation, the robot begins 
executing a plan after an initial solution is obtained. Hence as 
actions are performed, new task plans become shorter and 
shorter until the robot finally executes all actions and return to 
base. We simulate real-time execution on the Gazebo simulator 
using a Husky mobile manipulator. Perception of the 
environment is achieved using a laser scanner with a range of 
30 meters, while ηd is set to 0.05.

From Fig. 5, we note the following observations. Normally, 
the anytime planner without the dynamic component would 
force the robot to commit to the first action of a plan under all 
circumstances. However, the global re-planning unit allows the 
robot to follow a new optimal task sequence even part-way 
through a movement action if changes are detected. Secondly, 
the robot efficiently navigates past new obstacles and 
maintains global optimality by preserving previous knowledge 
in the path planning layer. This is not possible with the UP2TA, 
which would require planning from scratch in each instance.  

The solutions of DA-TPP may be subject to local minima 
according to the limitations of the heuristic planner used in task 
planning. For example, LPG-td may provide locally-optimal 
task plans but is always able to return solutions quickly. Other 
planners such as Metric-FF can provide globally-optimal 
solutions at the expense of lower efficiency. Conversely, the 
path planning layer maintains the asymptotic optimality 
property of RRT* and thus always converges toward globally-
optimal solutions if sufficient time is allowed. 

Figure 4. Anytime planning cost reductions 

Figure 5. DA-TPP dynamic replanning. (a) initial plan, (b) actual paths 

executed (unknown obstacles shown in blue) 
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