
2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

36

Abstract— The study of combined task and motion planning

has mostly been concerned with feasibility planning for high-

dimensional, complex manipulation problems. Instead this paper

gives its attention to optimal planning for low-dimensional

planning problems and introduces the dynamic, anytime task

and path planner for mobile robots. The proposed approach

adopts a multi-tree extension of the T-RRT* algorithm in the

path planning layer and further introduces dynamic and anytime

planning components to enable low-level path correction and

high-level re-planning capabilities when operating in dynamic or

partially-known environments. Evaluation of the planner against

existing methods show cost reductions of solution plans while

remaining computationally efficient, and simulated deployment

of the planner validates the effectiveness of the dynamic, anytime

behavior of the proposed approach.

Keywords—robotics, autonomous systems, task planning, path

planning, combined task and motion planning, dynamic planning

I. INTRODUCTION

The study of task planning and path planning for
applications in robotics has largely been conducted in isolation.
Task planning is carried out using a symbolic representation of
the world consisting of a finite set of discrete states. In this
domain, geometric relationships of objects in the world are, in
general, highly abstracted to reduce the size of the state space.
Thus task planners are rarely able to consider geometric
constraints of the planning problem. Path planning (a purely
geometric motion planning problem [1]) on the other hand
seeks to find an admissible path in ℝd space to transition a robot
from a start configuration to a goal configuration by exploiting
the geometric representation of the environment. While trivial
problems may be efficiently solved by performing task
planning in isolation and subsequently calling a path planning
instance for each movement action, applying the same
approach to more complex problems may produce sub-optimal
plans, or in the worst case be unsolvable.

An emerging concept in literature called combined task and
motion planning (CTMP) seeks to address this by integrating
the process of path planning and task planning. The authors in
[2] proposed a hierarchical approach that interleaves planning
with execution. The FFRob [3] is a CTMP planner that extends
FastForward heuristics used in symbolic planning to robot
motion planning, while [4] performs CTMP by precomputing
motion graphs and collision tables for a mobile manipulator.
The Task-Motion Kit (TMKit) [5], which addresses
probabilistic completeness and generality, is a general-purpose
framework that interfaces the symbolically-defined task
domain with the geometric relational properties of the motion
domain through a domain semantics layer. These
aforementioned work focus on feasibility planning for high
complexity problems involving object manipulation. However,

C. Wong, E. Yang and X. T. Yan are with the Department of Design,

Manufacture and Engineering Management, University of Strathclyde,

Glasgow, G1 1XJ, UK. (e-mails: {cuebong.wong, erfu.yang, x.yan}@

strath.ac.uk).

far fewer works have applied CTMP concepts to planning for
lower-complexity problems consisting of mobile robots. Yet
CTMP can provide improvements to the optimality of long
mission plans, or adapt task plans in response to failures or
perceived dynamic changes to the world. We highlight the
UP2TA framework [6], which integrates task and path
planning for applications to exploration mission planning.
However, UP2TA does not consider general cost spaces in path
optimisation, nor facilitates dynamic re-planning. Thus the
contributions of this work is two-fold: (i) we compare a base
planner, which integrates task and path planning to enable
optimal task planning in continuous cost spaces by making use
of a multi-tree T-RRT* algorithm [7], against UP2TA and a
planning-in-isolation approach, and (ii) we extend the base
planner with dynamic, anytime capabilities to enable high-
level re-planning and low-level path corrections in dynamic
environments. We collectively refer to the proposed planner as
the Dynamic, Anytime Task and Path Planner (DA-TPP).

II. PROBLEM DEFINITION

This paper addresses task and path planning (TPP)
problems for autonomous mobile robots. As a minimum, this
consists of a robot in an environment containing a set of
landmarks L. These landmarks represent locations in space
where a robot must perform some actions. A movement action
consists of traversing between any pair of landmarks la, lb ∈ L.
A valid planning problem within this domain consists of an
initial landmark from which the robot starts from, and a set of
tasks that must be performed at each landmark. These may be
defined as a discrete action within the planning domain. A goal
landmark for which the robot must be located at the end of the
plan may also be specified. For consistency, we assume that the
robot must begin and end at a root landmark l0, referred to as
the robot base, throughout this paper.

D. Gu is with the School of Computer Science and Electronic Engineering,

University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK (e-mail:

dgu@essex.ac.uk).

Dynamic, Anytime Task and Path Planning for Mobile Robots
Cuebong Wong, Erfu Yang, Xiu-Tian Yan, and Dongbing Gu

Figure1. The proposed base planner architecture

DOI 10.31256/UKRAS19.10

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

37

III. DA-TPP APPROACH

In DA-TPP, the base planner (Fig. 1) pre-plans all possible
paths before the execution of a task planner. The resulting path
costs are then configured into the task planning problem as
discrete movement action costs. This enables optimal task
planning as true path plans are considered in the task planning
phase. Indeed it can be inefficient to run an individual planning
instance for each possible movement action. This is addressed
through our previously developed multi-goal path planning
algorithm based on T-RRT* trees [7], which simultaneously
and efficiently finds feasible paths between all landmark pairs.

Given a continuous cost space mapping function, c, from
which a cost value can be derived for all robot configurations,
we define the path cost function, cp, of a path σ as a weighted
sum of integral cost and path length:

σ = 𝑙 𝜎 𝑎 ∑ (𝜎 𝑘) +𝑘= (1)

Where n is the number of subdivisions of σ, l() is the path
length and wa and wb are weight factors for c and l(σ),
respectively. This formulation enables consolidation of both
the cost function and path length as a weighted sum multi-
objective optimisation problem. When a termination criteria is
met, the planner returns the best set of paths and corresponding
costs found for each of these actions (cp = ∞ if no solution is
found). In the interest of anytime planning, we note that a TPP
solution can be found if all landmarks form a fully-connected
graph such that any landmark li ∈ L can be reached from every
other landmark lj ∈ L|i≠j by traversing the graph.

The task planning layer employs PDDL representation [8],
and is solved using the openly available planner Local Planning
Graphs (LPG-td) [9]. We chose to represent the planning
problem in PDDL due to its wide acceptance as a standard for
representing classical symbolic planning problems. This
enables interchangeable use of other heuristic planners (such
as Metric-FF [10]) developed for PDDL so long as they are
compatible with fluents as a minimum requirement.

A. Anytime extension

Anytime planning supports a request for an initial solution
after a fixed allotted time, which minimises idle time at the start
of a task. This is supported by the base planner under the
condition that sufficient paths are found to form a connected
graph across all landmarks. Once an initial TPP solution is
obtained, the path planning layer continues to iterate the path
planning algorithm while the robot executes the initial solution.
Suppose that the initial path cost for an action a is cp. Following
the work in [11], an upper cost bound Cs

+ is defined as: 𝐶+ = − 𝜂 ∙ . (2)

Where ηa is a constant. When the path planning layer finds
a new path for a with cp < Cs

+, a new instance of task planning
is called and cp is updated to the new path cost. This mechanism
guarantees that the task planning layer is called only when a
guaranteed improvement to an action cost is found.

When running this anytime planner alongside robot
execution, it is also necessary to consider the goals that have
been met thus far. This is addressed by updating the initial state
of the planning problem at each instance of task planning to
reflect the next state of the world after executing the current

action of the latest plan. In this way the robot always commits
to the first action of each plan.

B. Dynamic anytime extension

The complete DA-TPP architecture is shown in Fig. 2. The
key extensions are the local path correction and the global task
re-planner modules. Each time an obstruction to a currently
executed path is detected, a local path correction procedure is
performed to find a new optimal path to the goal configuration.
The DA-TPP then determines whether an instance of global re-
planning should be called using (3). Letting cp' be the path cost
of the remaining segments of the original path, a lower cost
bound is defined as 𝐶− = + 𝜂 ∙ ′ . (3)

Where ηd is a constant. When the cost of the corrected path
exceeds Cs

-, global re-planning takes place. This permanently
updates all planning trees with the detected obstruction, and
lazily finds a path to the robot’s current location, if it exists,
from every landmark. A new TPP solution is then produced
from the updated path plans to generate a new optimal
sequence of movement actions. The benefits of applying (3) as
a re-planning condition is briefly discussed in section V. B.

Accordingly the DA-TPP provides the following
behaviours in dynamic environments. When minor
obstructions are encountered, only small adjustments to the
planned path is required. This, in general, does not affect the
optimality of the task plan from a high-level perspective. It is
sufficient then to correct paths locally each time the same
obstruction is encountered. However, in situations where an
obstruction causes significant diversion for a particular traverse
(e.g. from road blockages), the likelihood of the obstruction
affecting other paths are high and thus re-routing may produce
new optimal task plans. In these situations it is necessary to
update the entire plan to maintain optimality.

IV. PATH PLANNING

The path planning layer of the base planner is implemented
following the approach described in [7]. Readers are directed
to this initial work for a detailed description of the multi-tree
T-RRT* algorithm. This section briefly discusses the dynamic
algorithms for local path correction and global re-planning.

Figure 2. DA-TPP architecture

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

38

Figure 3. DA-TPP benchmarking results. (a) planning time, (b) overall plan

cost

A. Dynamic path correction (local)

The local path re-planner corrects any single path according
to procedures based on elements of the RRTX algorithm [12].
At the start of any movement action, a new tree Tnew is
generated from two trees T0 and Tg corresponding to the start
and goal landmarks l0 and lg, respectively. Tnew is rooted at the
goal configuration qg and consists of all the vertices of T0 and
Tg rewired to minimise path cost according to the new tree root.
This step eases the dynamic re-planning procedure as the root
of the tree does not need to be updated at each time step as the
robot advances along the path. As the robot traverses along this
path, new environmental information is used to temporarily
update the configuration space C. A feasibility check is used to
determine if the updated configuration space invalidates the
current path plan. If it does, the algorithm proceeds to update
the path. Otherwise, the changes to C are discarded.

The algorithm invalidates all vertices that lie in the collision
region of new obstacles. All descendant vertices that remain
valid are then updated as orphans. This closely resembles the
propagateDescendants function in [12]. Following this, the
algorithm updates the connecting edges of the tree by iterating
through a queue of vertices consisting initially of the
neighbours of orphaned vertices (see reduceInconsistency
function in [12]). For each of these vertices, the algorithm
updates the parent of the current vertex, and then runs a
rewiring procedure on its neighbouring vertices. Any vertices
that are rewired at this step are then added to the queue. This
continues until no further improvements can be made. Finally,
a new path from the tree root to the robot configuration qrob is
found by attempting to connect qrob to neighbouring vertices.

B. Dynamic path correction (global)

The global re-planner provides an update to all solutions of
the path planning layer. When the condition in (3) is met, the
optimality criteria for the current action-motion sequence may
no longer hold and a new action-motion sequence must be
determined by updating the costs of all movement actions. The
algorithm first updates every tree by invalidating infeasible
vertices, updating orphaned vertices and cascading a series of
rewiring, as in section IV-A. New optimal paths between
landmarks are obtained by finding new connecting vertices

between corresponding pairs of trees. The set of best paths Σbest

are then updated accordingly. A temporary landmark ltemp is
then inserted into the TPP problem at qrob. An attempt to find
an optimal path from each original landmark to ltemp is made by
testing connections from neighbouring vertices of each tree to
the root of ltemp. Σbest is then expanded to include these paths.
Indeed the planner may not initially find a feasible path for
each of these movement actions. However, this does not
prevent the planner from obtaining a solution by making use of
the anytime attributes of DA-TPP to find action-motion
sequences despite certain actions possessing infinite costs.

V. EXPERIMENTAL EVALUATION

A. Base planner evaluation

The base planner is benchmarked across a number of
randomly generated cluttered and structured environments. We
assess the performance of these approaches in 50 × 50, 100 ×
100 and 300 × 300 environments. Note that in these
experiments the cost function c in (1) for a given configuration
q is given by c = 1/δ2, where δ is the distance to the nearest
obstacle. Thus c describes the ‘closeness’ of q to an obstacle.

We compare the performance of the DA-TPP base planner
with a simple planner consisting of task and path planning in
isolation (isolated TP) and UP2TA. The isolated TP consists of
a task planner that solves for an optimal action sequence by
using the Euclidean distances between landmarks as movement
action costs. For consistency in comparison, a single instance
of a bi-directional T-RRT* algorithm is called for each
movement action to obtain the final action-motion sequence.
Our implementation of the UP2TA framework employs the
greedy search algorithm [6] to obtain approximate cost metrics
for each possible movement action. For consistency, LPG-td is
then used to solve the task planning problem. An additional
path planning layer based on Theta* [13] is required to obtain
true paths for each movement action like in isolated TP.

Based on the results in Fig. 3, one may observe that the
UP2TA fails to consider cost spaces and consequently
performs notably worse than other planners when considering
total path cost for the same planning instances. In terms of
scalability, planning time highlights a key deficit of grid-based
approaches: as the size of the problem increases, its
performance generally decreases rapidly, as observed for
environments of size 300x300. In particular, grid-based
algorithms may become ‘trapped’ in enclosed regions that
forces the algorithm to search through a large number of
useless nodes needlessly. Isolated TP scales far better with the
size of the problem and maintains a low computational cost
across all trials. However, this approach finds solutions with
overall costs that are generally greater than the DA-TPP
approach. This is an expected observation as the task planning
layer is ill-informed by misleading action costs. Without
knowing the geometric relationships of objects in the world,
costly (or even infeasible) movement actions are unknown to
the symbolic planner.

In contrast, the DA-TPP consistently finds the lowest cost
plans in all test cases. Although this sacrifices computational

(a)

(b)

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

39

efficiency, the proposed planner scales well with the size of the
problem and indeed finds a solution faster than UP2TA in
almost all cases for 300 × 300 environments. Finally, the
quality of DA-TPP solutions may be further improved over
time as a result of anytime planning, as discussed below.

B. Anytime evaluation

To analyse the anytime component of DA-TPP, the base
planner was first run until an initial solution was obtained.
Following the planner description in section III, the planner
continues to run with ηa set to 0.03. Then, at defined time
instances a new solution is requested from the planner. The
corresponding overall cost of the task sequence at each of these
time instances are shown in Fig. 4.

These planning results show improvements made to the
overall solution at two levels. The observable decreasing ‘step’
behaviour corresponds to changes at the action sequence level.
Here the planner identifies a new optimal task sequence that
provides larger quality improvements as a result of higher
quality paths being found for previously expensive actions. On
the other hand, more minute improvements to the solution cost
is attributed to local path quality improvements that do not alter
the high-level task sequence. This observation provides
support for the behaviour of the dynamic components of DA-
TPP: small local changes to a path do not, in most cases,
change the optimality of the task-level action sequence. Hence
it is unnecessary to re-plan an entire action-motion sequence
for small local path changes.

C. Dynamic anytime evaluation

Finally, the complete DA-TPP approach is assessed
through simulations in the environment shown in Fig. 5, with
obstacles not known a priori shown in blue. Unlike the
experiment conducted for anytime evaluation, the robot begins
executing a plan after an initial solution is obtained. Hence as
actions are performed, new task plans become shorter and
shorter until the robot finally executes all actions and return to
base. We simulate real-time execution on the Gazebo simulator
using a Husky mobile manipulator. Perception of the
environment is achieved using a laser scanner with a range of
30 meters, while ηd is set to 0.05.

From Fig. 5, we note the following observations. Normally,
the anytime planner without the dynamic component would
force the robot to commit to the first action of a plan under all
circumstances. However, the global re-planning unit allows the
robot to follow a new optimal task sequence even part-way
through a movement action if changes are detected. Secondly,
the robot efficiently navigates past new obstacles and
maintains global optimality by preserving previous knowledge
in the path planning layer. This is not possible with the UP2TA,
which would require planning from scratch in each instance.

The solutions of DA-TPP may be subject to local minima
according to the limitations of the heuristic planner used in task
planning. For example, LPG-td may provide locally-optimal
task plans but is always able to return solutions quickly. Other
planners such as Metric-FF can provide globally-optimal
solutions at the expense of lower efficiency. Conversely, the
path planning layer maintains the asymptotic optimality
property of RRT* and thus always converges toward globally-
optimal solutions if sufficient time is allowed.

Figure 4. Anytime planning cost reductions

Figure 5. DA-TPP dynamic replanning. (a) initial plan, (b) actual paths

executed (unknown obstacles shown in blue)

ACKNOWLEDGMENT

This research is funded by the Engineering and Physical

Sciences Research Council (EPSRC) under its Doctoral

Training Partnership Programme (DTP 2016-2017 University

of Strathclyde, Glasgow, UK).

REFERENCES

[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path
planning and trajectory planning algorithms: A general overview,”
Springer, Cham, 2015, pp. 3–27.

[2] L. Pack Kaelbling and T. Lozano-Pérez, “Hierarchical task and
motion planning in the now,” in 2011 IEEE International

Conference on Robotics and Automation, 2011, pp. 1470–1477.

[3] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: An
efficient heuristic for task and motion planning,” Springer, Cham,
2015, pp. 179–195.

[4] J. Ferrer-Mestres, G. Francès, and H. Geffner, “Combined task and
motion planning as classical AI planning,” Jun. 2017.

[5] N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “The Task-Motion

Kit: An open source, general-purpose task and motion-planning

framework,” IEEE Robot. Autom. Mag., vol. 25, no. 3, pp. 61–70,

Sep. 2018.

[6] P. Muñoz, M. D. R-Moreno, and D. F. Barrero, “Unified framework
for path-planning and task-planning for autonomous robots,” Rob.

Auton. Syst., vol. 82, pp. 1–14, Aug. 2016.

[7] C. Wong, E. Yang, X.-T. Yan, and D. Gu, “Optimal path planning
based on a multi-tree T-RRT* approach for robotic task planning in

continuous cost spaces,” in 12th France-Japan and 10th Europe-

Asia Congress on Mechatronics, 2018, pp. 242–247.

[8] D. McDermott, “The PDDL planning domain definition language,”
AIPS-98 Plan. Compet. Comm., 1998.

[9] A. Gerevini, A. Gerevini, A. Saetti, I. Serina, and P. Toninelli,

“LPG-TD: A fully automated planner for PDDL2.2 domains,” 14th

Int. Conf. Autom. Plan. Sched. Int. Plan. Compet., 2004.

[10] J. Org Hoomann, “The Metric-FF planning system: Translating

‘ignoring delete lists’ to numeric state variables,” J. Artiicial Intell.

Res., vol. 20, pp. 291–341, 2003.

[11] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proceedings of the

2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2006, pp. 5369–5375.

[12] M. Otte and E. Frazzoli, “RRT X : Asymptotically optimal single-

query sampling-based motion planning with quick replanning,” Int.

J. Rob. Res., vol. 35, no. 7, pp. 797–822, Jun. 2016.

[13] S. K. and A. F. K. Daniel, A. Nash, “Theta*: Any-angle path

planning on grids,” J. Artif. Intell. Res., vol. 39, 2010.

(a) (b)

	UKRAS19-Proceedings-Final_Part40
	UKRAS19-Proceedings-Final_Part41
	UKRAS19-Proceedings-Final_Part42
	UKRAS19-Proceedings-Final_Part43

