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Abstract— A deep neural network architecture is proposed in

this paper for underwater scene semantic segmentation. The 

architecture consists of encoder and decoder networks. Pre-

trained VGG-16 network is used as a feature extractor, while the 

decoder learns to expand the lower resolution feature maps. The 

network applies max un-pooling operator to avoid large number 

of learnable parameters, and, in order to make use of the feature 

maps in encoder network, it concatenates the feature maps with 

decoder and encoder for lower resolution feature maps. Our 

architecture shows capabilities of faster convergence and better 

accuracy. To get a clear view of underwater scene, an underwater 

enhancement neural network architecture is described in this 

paper and applied for training. It speeds up the training process 

and convergence rate in training. 

I. INTRODUCTION

The scene understanding of the underwater environment is 
an appealing topic among marine researchers and the public 
too, as underwater and especially undersea domains highly 
capture its attention. Many applications benefit from 
underwater scene information such as seafloor survey and 
marine object detection[1]. Conventional methods for 
underwater scene understanding fall into multi-sensor data 
fusion. Castellani et al.[2] proposed to reconstruct 3D 
underwater environment with the aid of multiple acoustic 
views given by underwater acoustic sensors, but the trade-off 
between speed and accuracy limits this method for the real-
time use. Moroni et al[1] instead proposed to use both acoustic 
and stereo camera sensors, but the additional data fusion 
process for mapping has to be carefully considered. Moreover, 
it could be difficult to calibrate a stereo camera in underwater 
environment because the refractive effects lead to non-linear 
distortion effects that depend on the seawater density and 
incidence light rate. Furthermore, depth image only cannot 
provide the straightforward information for object recognition 
task in the current camera view. To achieve the object 
recognition task without considering depth information, an 
alternative approach is to use image semantic segmentation 
based on monocular camera. 

 Image semantic segmentation is one of the key fields in 
computer vision, to which deep learning has been giving many 
contributions during the past three years[3]. It is successfully 
used for indoor scene segmentation and outdoor scene 
segmentation[4]. The development of semantic segmentation 
benefits an increasing number of applications including 
autonomous driving, human-computer interaction and 
augmented reality, to name a few[3]. Compared with 
conventional semantic segmentation methods such as Markov 
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Random Field (MRF), Conditional Random Field (CFR)[5] 
and SVM [6] as classifiers, deep neural network can achieve 
higher accuracy with the ability of learning from high level 
representations Moreover, deep neural networks enable end-to-
end image semantic segmentation with simpler procedures.  

Autoencoder is a popular network structure for image 
semantic segmentation in deep neural network application field 
[3]. The encoder part is a convolutional neural network (CNN) 
for generating the feature maps by applying pooling operator. 
On the other hand, the decoder network is a reverse 
convolutional neural network based on the un-pooling 
operator.   

As in the successful cases of image semantic segmentation 
on indoor scene and road scene applications[4], our work 
focuses on end-to-end underwater scene semantic 
segmentation by using deep neural network with monocular 
camera only. In this paper, a network structure is proposed for 
underwater scene segmentation, which can be used for real-
time inference. The neural network architecture proposed in 
this paper enhances the generalization ability compared with 
using SegNet[4] when applying to real-time videos and needs 
less memory during training process compared with U-Net[7]. 
The underwater data used in this paper are collected by Witted 
Srl, Italy. 

Furthermore, considering the color distortion and 
underwater optical effects on underwater images, we apply 
Generative Adversarial Network (GAN) for underwater image 
enhancement to transform the original bluish images into 
surface-like ones. This approach aids to speed up the training 
process as it highlights the boundaries of the objects. 

This paper is organized as follow. Sec. 2 describes the deep 
neural network structure we proposed. Sec. 3 illustrates the 
experiment of training on underwater images and comparisons 
with other network architectures. To get a better view of 
underwater environment for training, Sec. 4 shows the methods 
we used for underwater image enhancement. Finally, we 
conclude in Sec. 5.     

II. UNDERWATER SCENE UNDERSTANDING

Fully Convolutional Network (FCN) [8] was the first work 
for pixel-wise semantic segmentation enabled by deep neural 
network. Instead of using decoder process, FCN 
applied backwards convolution (known as deconvolution) to 
connect coarse output with dense pixels [8]. U-Net [7] 
introduced instead the decoder network to expand the feature 
maps for medical image segmentation, adopting the idea of 
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concatenating the feature maps from encoder to decoder. 
However, the number of parameters in the deconvolution 
operator and of gradients in the back propagation, both 
generated by the feature map concatenation, slows down the 
training process. To reduce the number of parameters, SegNet 
[4] applies a new up-sampling method without learnable filters
when expanding the feature maps, and removes the
concatenation to reduce the gradients to be calculated during
the back propagation.

A. Network architecture

Typical neural networks for classification task such as 
LeNet [9] and AlexNet [10] take fixed-sized inputs because of 
the requirement of the fully-connected layers. However, both 
U-Net [7] and SegNet [4] remove these layers so that the input
can be of any size. To this extent, the architecture we propose
for underwater scene segmentation removes the fully-
connected layers and consist of an encoder network followed
by a decoder network. This architecture is showed in figure 1.

Network architecture for underwater scene segmentation. 

Our encoder network includes 13 convolutional 
layers from VGG-16 [11], pre-trained on the ImageNet dataset, 
where each layer is followed by a batch normalization 
layer[12] and a ReLU layer [13] to speed up the training 
process. These layers are grouped in 5 blocks, each ending with 
a max-pooling layer to reduce the size of feature maps. The 
decoder network is the mirror reverse structure of our encoder 
network, being made of 5 blocks each with one un-pooling 
layer followed by deconvolutional layers.  

B. Un-pooling layer

Current research [4][3] has shown that, instead of using
learnable filters with large number of learnable parameters, un-
pooling operators without learnable parameters can achieve 
similar performances. Our architecture follows this approach, 
and, it applies the max un-pooling method which records the 
max value indices of the pooling layers to the decoder network. 
The corresponding un-pooling layers use these indices to 
define the output position for their inputs, while leaving zero 
to the undefined positions. With this approach, the architecture 
keeps the spatial information of the feature maps.  

C. Concatenation

As from U-Net [7], in our architecture shown in Figure 1, 
we use the concatenation operator to transfer the feature map 
from the encoder to the decoder network. Furthermore, to 
reduce the size of the needed memory during training, we keep 
such concatenations for final two blocks of the encoder 
network, responsible for generating the dense feature maps. 

Concatenation helps preserves the information learned from 
encoder, and lets the decoder directly learn from the feature 
maps. For deep neural network, the concatenation operator also 
alleviates the gradient vanishing problem [14]. 

III. EXPERIMENT

We use PyTorch to implement our architecture. The 
training dataset were selected from the frames of two 
underwater videos recorded by Witted Srl; 70 images were 
manually labeled with 4 categories: seagrass, rocks, sand and 
seawater. The images were at 1920×1080 resolution, resized at 
640×360 for training to reduce the number of parameters. Over 
the training dataset, the numbers of pixels in each category are 
as follow: seagrass of 6.5M, rocks of 53.2M, sand of 22.2M 
and seawater of 63M. As the seagrass and sand mostly appear 
in the central of the view, we use augmentation methods to 
increase pixels numbers for sand and seagrass and the dataset 
size. After augmentation, the number of training data increases 
to 140 images by randomly rotating, and cropping. As for 
testing, we applied the model to those two raw underwater 
videos which include the 70 frames for training. These two raw 
underwater videos consist of thousands of frames, but some of 
the frames are new to the model.  

During training, to increase speed, we do not alter the pre-
trained weights of the VGG-16 pretrained model used as a 
feature extractor and we initialize the decoder parameters as 
describe in [14]. The network is trained by stochastic gradient 
descent (SGD) algorithm with learning rate as 0.01 and 
momentum as 0.9. The learning rate schedule is based on step 
decay with 0.1 decay rate for every 100 epochs.  

To make full use of dataset, we use cross-validation 
methods to train the model: the whole dataset of 140 images 
are divided into 28 segments by batch size as 5. Then, only 1 
segment is selected as validation data while another 27 
segments are used for training. Each epoch, the validation 
segment is sequentially selected to statistically balance the 
whole dataset. That means every segment has the same 
probability to be elected as validation segment. As the task for 
semantic segmentation is a classification problem, each pixel 
in label image is a one-hot vector and cross-entropy loss is 
chosen. We calculate the overall accuracy as the number of 
correctly predicted pixels over the total pixel number for each 
epoch. 

Table I illustrates the loss and overall accuracy on training 
images during training process and shows that our network 
makes the training process convergent faster than U-Net and 
SegNet. The training results show also that our network 
outperforms U-Net with a large gap of loss and accuracy and 
is slightly better than SegNet 
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TABLE I. TRAINING PROCESS 

a. Training accuracy (%)

For validation process, we used the metrics of mean 
accuracy and mean intersection over union (mIoU). The mean 
accuracy is the mean of predictive accuracy over all classes in 
the dataset which is slightly different from overall accuracy 
because it considers the balance among the accuracies between 
different classes. Mean intersection over union (mIoU) is the 
metric used in [15] and penalizes the fault predictions. Table II 
presents the results of validation after 300 training epochs. It 
shows that our network outperforms U-Net and is slightly 
better than SegNet too. However, for memory use, SegNet is 
more efficient than ours when training, as the concatenation 
operators of our network require more memory during back-
propagation, although our network shares the same number of 
trainable parameters with SegNet.  

TABLE II. VALIDATION PROCESS 

 N

e

t

w

o

r

k 

 Validation 

Parameters 
Memory 

used 
Accuracy 

(%) 

Mean 

Accuracy 
(%) 

mIoU 
(%) 

U-Net 16.08M 8G 0.976 0.718 0.670 

SegNet 14.7M 4G 0.985 0.742 0.705 

Ours 14.7M 7G 0.994 0.744 0.707 

Figure 2 shows the example results predicted from 
these three networks. It shows that the three networks all work 
well with on the dataset.  

Predictions on different network architectures 

Real-time video frame testing 

For real-time video testing, our model can achieve nearly 25 
frames per second, which is close to the standard real-time 
frame rate. The results are shown in figure 3, our work and U-

Net have a better generalization ability to recognizing unseen 
scenes on new videos than SegNet[4]. E.g. The seagrass in the 
centre can be recognized by U-Net and our architecture. This 
improved performance is given by the concatenation operation 
in U-Net and in the last two blocks in encoder network of our 
architecture.  

IV. UNDERWATER IMAGE ENHANCEMENT

The undersea images are of a blue green tinge, mostly 
blurry and unclear because of the light absorption in water and 
diffusion due to suspended particles [16]. Moreover, the color 
distortion and blur effects change during seasons. In this 
situation, the visual model trained with raw images may not 
perform well. Hence, we consider an image enhancement 
process to standardize all images in a clear view. 

The algorithms for underwater image enhancement can be 
classified into two categories: physics-based technique and 
deep learning technique. For example, the work of Luz [16] 
applies an energy minimization formulation using a Markov 
Random Field. Deep learning models instead, such as 
WaterGAN [17], UGAN and UGAN-P [18] used Generative 
Adversarial Network (GAN) to enhance the underwater 
images. 

A. Method

We use GAN architecture as well, which consists of a 
generator network and a discriminator network. The U-Net 
structure is used for the generator network and it is responsible 
for learning the image style by matching blurry images to clear 
ones. The discriminator network uses instead the same module 
described in PatchGAN [19] with four convolution layers and 
calculates the loss from enhanced images and clear images. 
During inference, the generator network predicts clear images 
from blurry images as input.   

B. Dataset

The training of the enhancing GAN requires training data 
of paired clear and unclear images. Such pairs are collected  by 
using clear images from ImageNet [20] and using unclear 
synthetic images generated by the UGAN of [18] from the clear 
ones.  

C. Result

Underwater image enhancement result (left column shows original images, 

righ column shows enhanced iamges) 

After training, the enhancing GAN architecture is verified 
with our underwater image dataset. A sample result is showed 
in figure 4, where the left image shows the original frame 
before processing, while the right column shows the enhanced 
one. Not only the enhanced image is not bluish anymore, but 
also the scene details like edges of stone, sand and sea grass are 
better defined. However, the color of sand and stones in 
enhanced image is more yellowish.  

 N

e

t

w

o

r

k 

 Training (%)

100 epochs 200 epochs 300 epochs 

Loss Acca Loss Acc Loss Acc 

U-Net 0.215 0.930 0.080 0.971 0.078 0.972 

SegNet 0.116 0.957 0.055 0.979 0.053 0.980 

Ours 0.100 0.961 0.045 0.983 0.036 0.986 
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D. Segmentation experiment with enhanced images

To verify if the image enhancing method helps the training 
process of our scene segmentation architecture, we separately 
train our network with two datasets: one model with the 
original underwater images; the second one with the enhanced 
ones. Figure 5 shows sample results from such dual training 
processes, while the recorded loss and overall accuracy are 
showed in Table III. The model trained on the enhanced image 
dataset is more accurate at 100 epochs than the original one 
with a faster convergence rate.  

Compared image segmentation result with enhanced iamges 

TABLE III. ENHANCEMENT 

a. Training accuracy (%)

In conclusion, GAN architecture shows potentials for 
underwater image enhancement from blurred saturation, 
recovering the images into ground-like images and helping to 
convergence of the segmentation training process. 

V. CONCLUSION

This paper shows deep neural networks can be effective for 

underwater semantic segmentation and underwater image 

enhancement. Our proposed segmentation network achieves 

better performances according to different metrics than U-Net 

[7] and is slightly better than SegNet [4] too. The tested GAN

architecture for image enhancement is showed to help the

training convergence rate of our segmentation architecture. In

future our segmentation method could be extended to used

jointly with depth information for further underwater vision

tasks.
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 Training (%)

50 epochs 100 epochs 200 epochs 

Loss Acca Loss Acc Loss Acc 

Original 0.211 0.925 0.148 0.929 0.041 0.984 

Dehazed 0.185 0.932 0.064 0.976 0.043 0.984 
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