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 

Abstract: In order to meet the trend of customers demanding 

more customised and complex products, human workers and 

robots need to collaborate in closer proximity. Working in shared 

environments raises safety concerns of humans getting injured 

by robots. Current safety systems are mostly vision based and 

detect movement after it has started. This work proposes the use 

of an electroencephalography (EEG) which measures the 

brainwaves in order to detect a worker’s intention to move. This 
is expected to provide 0.5 seconds gain for the system to react in 

advance of the actual movement. In this paper the details on how 

EEG sensors can be integrated to detect intentions and how these 

can be extrapolated using machine learning techniques, are 

presented. The ultimate vision is to deliver an early warning 

system to enhance existing safety systems. 

Keywords: Human-Robot Collaboration, Symbiotic Assembly 

Systems, Robot Safety, EEG, Movement-Intention Recognition, 
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I. INTRODUCTION

The consumer market for manufactured goods is currently 

following a trend from mass produced goods towards 

individual and highly customised products. Simultaneously 

due to shorter lifecycles of products and a higher product 

variety, manufacturing goods becomes more complex [1]. 

Conventional robots are designed for low mix production 

repeatedly coping with a high payload at a high speed while 

providing consistent quality. This, however, conflicts with the 

aforementioned trend towards manufacturing highly 

customised goods [1] [2]. 

Human workers strengths, on the other hand, are the cognitive 

skills, adaptability to changes and the ability of making 

difficult decisions with incomplete data [3]. 

An opportunity to cope with the demands of high adaptability 

and high complexity in manufacturing can be the symbiosis of 

robots and human workers in a confined workspace. A 

symbiosis typically combines the benefits of two systems. 

This, however, requires clear and transparent communication 

channels and awareness of all members in the system [3]. 

While most research focuses on robots replicating human 

activities and movements, in a human-robot collaboration 

environment both parties are expected to perform tasks 

simultaneously which are related to their characteristic 

strengths. Fully automated systems, on one hand, can achieve 

a high production volume at a low-level product complexity. 

Manual systems, on the other hand, typically produce complex 

products at a low volume. Therefore, human-robot 

collaboration could change manufacturing towards producing 

high complexity goods at a high production volume [3]. 

Consequently, human workers and robots need to work in close 

proximity to each other. These “fenceless”, shared 
manufacturing environments raise safety concerns, as robots 

lack abilities to detect humans, whilst being able to operate at 

high speed and at high levels of torque.  In order to ensure 

human worker’s safety, there are video-based systems

available which will stop/slow down a robot once a human 

worker is approaching the robot and at risk of getting injured 

[4]. Shutting down a robot as a safety feature, however, should 

be seen as ‘ultima ratio’ – the final argument/solution. A better

approach is to react beforehand by communicating the 

intention meaning the willingness of performing a task before 

the actual execution [5]. 

There are concepts for Robot-Human communication such as 

using Augmented Reality glasses to show robot movement 

animations to human workers in advance, in order to highlight 

the robot’s intentions [1].

However, communicating human intentions to a robot is rather 

difficult. Therefore, a concept to apply electroencephalography 

(EEG)-based (Brainwave-measuring) systems to detect human 

intentions to perform motor-movements is investigated. 

Instead of replicating the movement intention with a robotic 

arm, the measured intention will be used as means of 

communication. In order to validate, that EEG-based sensors 

can be integrated in a system, it is essential to accurately detect 

human movement intentions. The idea is to establish a new 

mechanism to enhance current video-based safety systems, by 

taking advantage of detecting intentions before the actual 

execution. 

II. BACKGROUND

Robots seem to be an essential part of today’s manufacturing 
industry with 2.6 million robots in operation worldwide in 2019 

and increase of 13% every year [2]. 

However, the level of human-robot interaction in such systems 

is still fairly low, despite recent advances in robot technology 

[6]. The interactions between humans and robots range from 

working in parallel, in sequence or jointly. Thus, one can argue 

that the interactions are dependent on the level of expected 

proximity between the two. A very low-level interaction is the 

human-robot coexistence. Both share the same working 
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environment while performing different tasks which do not 

interfere. In such situations, safety systems are required to 

avoid collisions, however human-robot communication is 

restricted to “START” / “STOP”-commands only [7]. In a

human-robot assistance scenario the activities of both 

humans and robots need to be synchronised. Also, a 

communication needs to be established to enable 

interoperability. The relationship of humans and robots can be 

viewed as Client and Server interaction. Robots are supposed 

to serve workers without cognitive capabilities, hence they’re 
human-guided. [4] The highest level of interaction is the 

human-robot collaboration by jointly executing tasks. This is 

also due to the fact that it’s the most intense and challenging 
way of interaction. Since both workers and robots do not only 

share the same task but also interact within the same process, 

interoperability is required on a detailed level [3]. 

Apart from both workers and robots needing to be aware of 

each other, timing of each task is also essential. This leads to 

the need of situational, goal-oriented planning as well as being 

aware of each member’s current and future tasks or intentions. 
Possible interferences of tasks need to be anticipated and 

solved in order to establish a safe collaboration. Therefore, 

robots are also required to have cognitive skills [7]. 

In order to establish safety during a collaborative operation, 

ISO 10218-1 distinguishes between four levels of collaboration 

and associated means of risk reduction [8]. The first one is a 

safety-rated monitored stop, meaning that there will be no robot 

motion once a human operator is entering in a collaborative 

work space. A second operation is hand-guiding which will 

only allow robot motion through direct input of the operator. 

The third clause contains the definition of speed and separation 

monitoring. Therefore, robot motion is enabled when the 

separation distance is above minimum separation distance. 

Finally, there is power and force limiting by design or control. 

In that case robots are designed to only impart limited static or 

dynamic forces in the event of a human-robot contact [9]. 

However, these safety features are the ‘ultima ratio’ - the final

solution to prevent hazards. Organising tasks and 

communicating intentions from operators to robots and robots 

to operators beforehand could avoid creating high risk-

scenarios which would trigger the safety systems to interfere. 

According to Gustavsson et al. (2018) there are three main 

approaches to robot-human communication. One is augmented 

reality (AR) which overlays digital information onto camera-

captured real-world objects. The technology provides 

information where it’s needed. A second approach is Text-To-

Speech (TTS) which allows robots to provide understandable 

audible messages for human workers. While this technology is 

mostly used in devices such as satellite-navigation, there are 

also opportunities to use it in a manufacturing environment. A 

third approach is Pick-by-light. A small lamp installed on each 

storage container indicates which part or tool a human worker 

should pick. Although this system is not very flexible, it has 

been in use in modern warehouses [6]. 

Human-to-robot communication, on the other hand, often 

focuses on natural or intuitive human communication channels. 

While haptic controls such as a joystick to guide a robot were 

used in assistance or coexistence scenarios, they are less 

applicable in human-robot collaboration. Automatic speech 

recognition (ASR), on the other hand, allows humans to 

communicate in a natural way with the robot, similar to human-

human interactions. In contrast to haptic controls, humans 

communicate without removing hands or their focus from their 

current task. Gesture recognition is not only restricted to hands 

but can also mean nodding the head in order to indicate an 

affirmative decision. Both vision-based, and glove-based 

technologies allow the system to locate a human worker’s
position as well as receiving commands such as highlighting an 

object by pointing at it. Overall, best results were achieved 

when combining different channels [10]. 

Safety systems tend to rely on vision-based systems in human-

robot collaborative manufacturing [4]. Their main purpose is to 

help avoiding collisions or limiting impact forces to a level that 

they won’t cause injuries. The reason why vision-based safety

systems are so popular is because of their affordable price, high 

flexibility and easy tailoring[4]. 

While electroencephalography (EEG) has been used to analyse 

brain behaviour for a few decades, due to recent developments 

regarding mobility, it can now also used in an industrial 

environment [5]. Mohammed and Wang (2018) established 

training sessions for human operators to think of commands. 

The measured brain activity-patterns were translated into robot 

commands. Similar to vision based communication, this allows 

an operator to perform an individual task, while at the same 

time controlling the robot in a human-robot assistance scenario 

[11]. 

III. PROBLEM DESCRIPTION

As described in Section II, there is a trend towards human-

robot collaboration in industrial assembly processes. Human-

robot collaboration is more than human-robot coexistence and 

human-robot assistance. Human-robot collaboration requires 

both to share the same working environment while performing 

tasks which are assigned according to the required, 

characteristic strength of either humans or robots [4]. 

The main advantages of human-robot collaboration will be the 

ability of coping with high production volume while 

assembling increasingly more complex products [3]. 

However, these shared working environments raise safety 

concerns due to the close proximity. Therefore, human workers 

and robots need to be in a constant feedback loop which 

ensures awareness of each member in the system in order to 

avoid collisions or any negative interference. The main purpose 

of these safety system is to keep human workers safe and to 

prevent possible injuries. Current safety systems solutions are 

mostly vision-based. They detect the current location of a 

human worker as well as the performed movement. Typically, 

movements are detected after their execution has started, which 

is only possible after certain timespan which is required to 

process the images. 

The question that arises is if it is possible to predict movements 

before they occur. This would provide the safety system with 

faster reaction times and allow for higher leeway on robot 

operations. Based on the processed images, there are 
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approaches to predict future motions by using statistical 

methods and estimated probabilities. The accuracy of these 

predictions, however, decreases with the complexity of the 

assembly task [4]. 

An opportunity to physically measure human arm movement 

intentions and therefore enhancing/extending existing vision-

based safety system can be the usage of EEG-measured brain 

waves. Liu and Wang (2017) state that the human brain is 

always analysing and evaluating motions before executing 

them [12]. 

Therefore, it is possible to detect intentions such as human arm 

movement by recognising patterns in the EEG, as highlighted 

in Figure 1 [5]. 

Figure 1  Pre-movement patterns [13] 

Generally, there are two neuro-physiological phenomena that 

can be detected before a voluntary action occurs. The first one, 

sending weak signals, is called Bereitschaftspotenzial 

(readiness potential) and occurs up to 1.5 seconds before the 

actual movement. The second one, sending a stronger, more 

easily measurable signal through EEG, can be detected up to 

0.5 seconds before the movement [13]. In order to gain a time-

related advantage, the time to process the EEG data, including 

feature-extraction, classification, evaluation by 

contextualising and finally, giving the feedback command, 

needs investigation whether it is faster than video-based 

systems. However, the data-stream transferred by EEGs is 

presumably smaller than the data-stream which is processed in 

video-based safety systems. This could also offer the 

opportunity of achieving a faster processing performance. 

Another challenge that should be considered apart from 

processing and reaction time is accuracy. Safety systems 

typically require a high Recall (retrieving all intentions) and 

then a high accuracy. The main purpose of this bias is to avoid 

False Negatives, meaning that the safety system should rather 

cause a false alarm, than missing an actual hazardous situation. 

Therefore, the safety systems should consider this bias when 

modelled to ensure a similar behaviour to existing systems. 

There is a clear potential to assess EEG as a potential solution 

for predicting motion, which can be used in safety system, but 

would also have wider applications on human-robot 

collaborations, as it would provide an interfacing path that 

currently does not exist. Nevertheless, it is also important to 

state that EEG-based experiments are mostly performed in 

quiet and sterile laboratories which are intended to protect an 

experiment from external influences as good as possible. In an 

industrial environment, on the other hand, there are various 

sources of external stimuli such as a high noise level, machines 

performing movements and other sensor-disturbing 

influences. Typically, an EEG is measuring micro-voltage 

levels whereas a human worker could stand next to a machine 

running at thousands of volts. These influences also need 

further investigation and considered before an EEG-based 

system can be applied in an industrial environment. 

IV. METHODOLOGY FOR DETECTING HUMAN INTENTIONS TO 

MOVE 

In order to extend existing safety systems, it is essential to 

measure worker’s movement intentions. An EEG allows to 
detect patterns; however, these need to be mapped with actions 

to differentiate between being idle, having the intention to 

move and finally the movement itself. Therefore, the main 

approach is first, to detect movement intentions before then 

optimising classification accuracies. Finally, the time-related 

advantage over video-based systems needs to be validated. 

The general process for an integrated movement intention 

recognition with an EEG would be (1) measuring brainwaves 

at certain locations before (2) pre-processing the signal by 

using filters to reduce the noise. Bousetta et al. (2017) 

examined channels (Figure 3) to detect movement intentions. 

The channels AF3, AF4, F3 and F4 were used[13]. 

Figure 2  Responsible EEG-channels [5] 

In a third step, a feature extraction needs to be performed to 

reduce the dimensionality of the features. Typically, 

sensorimotor rhythms that can be measured before and during 

an arm movement, are frequency bands of 8 Hz – 12 Hz and

12 Hz – 22 Hz which can be filtered with a Butterworth-filter.

After applying a Fast Fourier Transformation, distinct signals 

can be detected [5], [13]. 

Figure 3  Integrated EEG-measurement in Process 

Finally, a classification is performed (4). For each arm there 

are the aforementioned classes: Idle, intention and movement. 
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Bousetta et al. (2017) used a Support-Vector Machine (SVM) 

as a state of the art-classifier [5]. Planelles et. Al. (2014) also 

obtained highest accuracies with SVMs compared to other 

statistical methods such as k-nearest neighbours [13]. Either 

classification algorithm requires a training phase before it can 

be used in the process shown in Figure 3. However, instead of 

passing along the commands to the robot in order the replicate 

the human movement. The human intention of moving a left / 

right arm in combination with the current context of the 

worker’s position and task can be evaluated (5). Then it can be

integrated into the safety-system. While vision-based safety-

systems must detect differences in arm positions and therefore 

reacting relatively late, the main advantage of the EEG-

intention recognition is that the processing of brainwave 

signals can already begin before the actual movement is 

executed. After the evaluation-phase (5), there is the 

opportunity to follow up with a reaction (6). Based on Villani 

et al. (2018) there are three possible feedback options. The 

first option is to fully stop the robot. The second alternative is 

to reduce speed. A third possibility is to reduce power and 

force in order to not injure human workers [9]. While the first 

three steps within the process stay the same (measuring, 

filtering and feature extraction), there are opportunities to train 

and later to use different classification algorithms. Bousseta et 

al. (2017) measured the arm-movement intentions for four 

participants. The overall mean accuracy achieved is 84.18%. 

In their paper similar results presented had an accuracy of 78% 

up to 88%. However, in each case the method for performing 

a classification was based on SVM’s [5].

Due to the rapid development of machine learning algorithms 

including artificial neural networks and deep learning, there 

are more advanced classifiers available than SVM’s. 
Jiao et al. (2017) compared different classifiers for EEG-

measured data. Their accuracy for the SVM with 84.66% is 

close to the aforementioned 84.18%. In their paper, a model 

based on a Convolutional Neural Network increased the 

accuracy up to 92.37% [14]. However, according to Géron 

(2017), there are two main approaches of deep learning: 

Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CNN). CNN’s are typically used for image 
recognition and visual feature based identification, RNN’s, on 
the other hand, are typically used to identify time-based data 

series such as stock-market rates and language recognition 

[15]. Due to EEG-signals for arm-movements also being time-

based series and since they can, similarly to language 

recognition, be seen as a means of communication there is also 

the opportunity of increasing accuracy and recall by using 

RNN’s [15]. In the context of safety in a human-robot

collaboration scenario, it is important to implement bias 

towards high recall over high accuracy when training the 

classifiers to recognise all movement intentions. On the other 

hand, a false-alarm-scenario is a False-Positive intention 

recognition leading to an unnecessary interruption of the robot 

movement. This is also desired to be prevented or kept as low 

as possible, since it will slow down the assembly process. 

V. CONCLUSION

In shared manufacturing environments, human-robot 

communication becomes more important. While robot 

movements are predefined, human intentions are difficult to 

detect. Video-based safety systems can only react to human 

movement after it started. A novel concept of measuring 

human movement intentions and integrating them into a safety 

system is presented. It is expected to provide additional 

reaction time to safety systems. The proposal is to use existing 

approaches that demonstrated the use EEG-measured 

brainwaves to replicate human movements with robotic arms. 

By using a similar approach to use the brainwaves as a means 

of communication by detecting human intention to move. The 

main goal is to validate the possibility to detect human 

intentions and by providing this information to the robot 

enable the vision of symbiotic human-robot collaborations. 
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