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 

Abstract— In an agricultural context, having autonomous

robots that can work side-by-side with human workers provide a 

range of productivity benefits. In order for this to be achieved 

safely and effectively, these autonomous robots require the 

ability to understand a range of human behaviors in order to 

facilitate task communication and coordination. The recognition 

of human actions is a key part of this, and is the focus of this 

paper. Available datasets for Action Recognition generally 

feature controlled lighting and framing while recording subjects 

from the front. They mostly reflect good recording conditions but 

fail to model the data a robot will have to work with in the field, 

such as varying distance and lighting conditions. In this work, we 

propose a set of recording conditions, gestures and behaviors that 

better reflect the environment an agricultural robot might find 

itself in and record a dataset with a range of sensors that 

demonstrate these conditions. 

I. INTRODUCTION

There are quite a number of datasets available that provide 
sensor readings of humans performing various activities. These 
usually come in the form of RGB videos, with ground truth in 
the form of action labels [1,2,3] or human skeletons (a set of 
joint positions organized as a graph) [2]. Today's datasets cover 
a wide variety of human actions, but mostly contain videos 
recorded by human camera operators under controlled lighting 
conditions. This results in videos where the subject is usually 
frame filling, conveniently oriented and illuminated well. 

These conditions are not met in an agricultural setting 
where the camera operator is a robot, the camera can not be 
zoomed in on far-away targets or adjusted in direction, and the 
lighting conditions change with weather and the time of day. 
Additional problems can be caused by occlusions due to 
vegetation, infrastructure or machinery. 

As a result of this mismatch, the researchers in [4] created 
a computer vision dataset with focus on the specific challenges 
for autonomous navigation in orchards like occlusions and 
poses uncommon in existing datasets. 

Our research is carried out in the context of the RASberry 
project [5], which aims to develop autonomous fleets of robots 
for in-field transportation to aid and complement human fruit 
pickers. 

In our setting, an agricultural robot has to cooperate with 
human field workers efficiently and comfortably. The workers 
pick berries into crates either in an open field or in a poly-
tunnel. Once a crate is full, the robot will collect the crate and 
transport it to a destination outside the field for further 
processing. 
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This application requires basic communication between 
humans and robots. The robot has to learn where to go when, 
how far away from a picker it should stop and when it should 
leave again. 

There are a number of interaction modes to choose from. 
Voice recognition, haptic interaction using buttons or touch 
screens, and gesture recognition either through remote 
observation or worn sensors have all been used in the past. We 
settled on remote gesture/behavior recognition as voice 
recognition is made infeasible by windy conditions and worn 
movement sensors as well as haptic interaction over distance 
rely on a wireless communication infrastructure that cannot be 
relied upon to be present in fruit fields. 

Figure 1 shows how we are recording this dataset of action 
and behavior videos suitable to this task, i.e. in an open field at 
various distances and lighting conditions. We further extract 
skeletons using OpenPose [8,9] and investigate the influence 
of sensors and distances on extraction performance. 

In other work, OpenPose has been applied in a gait 
recognition task [10] and for human pose matching [11]. 

In Section II we will introduce the dataset in detail and 
motivate the design choices we made. In Section III we will 
give insight into the features of the dataset with special 
emphasis on the performance of different sensors at various 
distances, before concluding in Section IV. 

Towards a Dataset of Activities for Action Recognition in Open 
Fields
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Figure 1: On the left: Our robot (SAGA Robotics Thorvald [6]) in front of 

our poly-tunnels. On the right: The sensor setup used in the recording. The 

figure at the bottom shows our experiment setup: An actor performing 

actions and behaviors at various distances to the robot.
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II. DATASET FEATURES

The choice of activities and decision to record at various 
distances are inspired by our application, the collection of fruit 
crates from human field workers and transportation of said 
boxes to a cooling facility outside the field [5]. The dataset was 
recorded outside, on a piece of grassland, under varying 
lighting conditions (sunny, cloudy, morning to afternoon) and 
at distances ranging from 5m to 50m, at 5m intervals. 
Recording at different distances allows us to determine the 
performance of sensors and algorithms over the interaction 
range that the robot will face in action. 

We recorded 10 actors, performing every activity once at 
each distance. Behaviors were performed from the front, back 
and side for a basic coverage of different directions. 

The gestures were chosen for their relevance in basic 
communication between human and robot, the activities as a 
sample of interesting behavior displayed by human fruit 
pickers. 

Thereafter each frame up to 25m distance was labeled with 
distance, actor ID, action and the direction the actor was facing. 
Labeling at further distances was hampered due to the actor 
being too small in the frame. The following list gives a short 
overview of dataset features:  

 Distances: 5m   ̵ 50m at 5m intervals

 Actors: 10 actors, recorded individually

 Sensors: ZED stereo camera (RGB video and depth
video), Optris thermal camera (thermal video), Velodyne
VLP-16 (stream of 3D point clouds)

 Gestures: Waving, beckoning, indicating to stop, shooing,
thumb up, thumb down, lower arm up, lower arm down,
pointing

 Activities: Walking*, turning*, crouching down, standing
up; with a crate in hand, (marked classes also without
crate)

We chose a range of behaviors observable from human fruit
pickers at work, and a set of gestures we deem helpful for basic 
communication over distances between 10 and 50 meters in the 
context of our application (i.e. directing a robot to collect and 
transport crates). The following two subsections will give a 
short overview of the gestures and activities.  

A. Gestures

To direct the robot's attention to the worker in need of 
support, we selected a waving and a pointing gesture. 

Waving: With the upper arm stretched out to the side, a 
rhythmic side to side motion of the lower arm. 

Pointing: With the upper arm stretched out to the front, fist 
clenched except for the index finger which is also outstretched. 
We recorded this gesture at 0°, 45°, 90°, 135°, 180°, 225°, 
270°, and 315° for basic directional coverage. 

To facilitate comfortable and efficient loading of the robot, 
we want to direct it to a preferred stopping distance. For this 
we selected the beckoning, stop and shoo gestures. 

Beckoning: With the arm partly stretched out to the robot and 
the palm facing the body, a sometimes circular fanning motion 
of the hand. 

Indicating to stop: With the arm stretched out to the robot, the 
palm facing away from the body, fingers pointing up. 

Shooing: With the arm partly stretched out to the robot and the 
palm facing the body, a fanning motion of the hand with 
emphasis (higher speed) on the motion away from the body.  

For basic feedback purposes, we included a thumbs 
up/down gesture and a variant using the lower arm instead of 
the thumb, which should be easier to detect at further distances. 

Thumbs up: With the arm partly stretched out to the robot, fist 
clenched and thumb sticking out, pointing up. 

Thumbs down: With the arm partly stretched out to the robot, 
fist clenched and thumb sticking out, pointing down. 

Lower arm up: With the upper arm stretched out to the side, 
the lower arm pointing straight up. 

Lower arm down: With the upper arm stretched out to the 
side, the lower arm pointing straight down. 

For sample stills of the recorded gestures, please refer to 
Figure 2 at the bottom of this page. 

B. Activities

The most common activities in our domain are - besides the 
picking of berries - walking and turning around, crouching 
down, and standing up. Each of these activities occurs with free 
hands and while carrying a crate. 

Being able to detect different behaviors allows the robot to 
learn activity models, specific to each individual worker, which 
allows it to predict the timing of future support requests. 

Walking 5m with/without crate: Recorded from the front, the 
back, the right and left side. 

Turning 90° with/without crate: Recorded from the front, the 
back and the right side. 

Figure 2: A sample of the gestures we collected for the dataset. From left to right: wave, come, stop, shoo, thumb up, thumb down, lower arm up, lower arm 

down, pointing anti-clockwise at 45° intervals. The skeletons shown are 2D skeletons back-projected from 3D skeletons generated by the ‘Lifting from the 
Deep algorithm’ [7] run with OpenPose [8,9] 2D skeletons as input. 
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Turning 180° with/without crate: Recorded from the front. 

Crouching down with crate: Recorded from the front, the 
back and the right side. 

Standing up with crate: Recorded from the front, the back 
and the right side. 

Table 1 shows the average duration for each action and 
behavior. The individual actions have a relatively short (<4s) 
duration and many of them like waving, shooing or the ‘come’ 
gesture consist of many, much shorter movements. A system 
running motion-based Action Recognition on this dataset will 
have to perform at a challenging framerate in order to capture 
these movements correctly. 

TABLE I. AVERAGE DURATION PER ACTIVITY 

Activity Average 

Duration 

Activity Average 

Duration 

Wave 3.73 Come 2.20 

Shoo 2.22 Stop 2.25 

Thumb up 1.71 Thumb down 1.90 

Arm up 1.92 Arm down 2.09 

Crate down away 1.83 Point 0 1.92 

Crate up away 1.29 Point 45 1.91 

Crate down side 1.21 Point 90 2.00 

Crate up side 1.30 Point 135 1.82 

Crate down toward 1.34 Point 180 1.81 

Crate up toward 1.11 Point 225 1.88 

Walk away 3.20 Point 270 1.99 

Walk away (crate) 2.20 Point 315 3.20 

III. DATASET CHARACTERIZATION

For the characterization of the dataset we combined the 
hand gesture classes (wave, come, stop, shoo, thumb up, thumb 
down) into a single class (hand gesture), as the skeleton models 
we use [7,8,9] do not support hand detection. Detection of 
individual fingers at longer distances is further complicated 
and ultimately prevented by sensor resolution. 

The dataset was recorded outside which allows us to record 
at a wider range of distances and provides a natural variety in 
lighting conditions. The flat grassland, on which the dataset 
recording took place, is a well enough approximation for the 
flat ground we find in poly-tunnels, but does not feature enough 
occlusion of feet and lower legs or variations in ground level 
to model conditions in open fields. 

Our data does not contain occlusions of the upper body 
except for self-occlusions from body parts/held items (crates). 
In this respect it is less challenging than the intended domain.  

Recording outside allowed us to examine how larger 
distances affect skeleton extraction in our setup. Skeletons 
were extracted using OpenPose [8,9] from the RGB video as 
well as a color-coded version of the thermal camera feed. An 
example of the extracted skeletons is shown in Figure 3. 

The confidence scores for skeleton extraction shown in 
Figure 4 are averages of the confidence scores produced by 
OpenPose for each skeleton. They are averaged over the 
duration of actions for different sensor sources individually. 

The data shows significantly better skeleton extraction for 
action classes where the actor is facing the camera (arm down, 
arm up, wave, hand gestures, ‘towards’ gestures) compared to

classes where the actor is facing to the side or away (‘side’ and 
‘away’ gestures). This stems from self-occlusion of the further
body side occurring in side views and self-occlusion of the 
arms by the torso when the actor is performing some action 
while facing away from the camera. 

To note are also differences in scores for skeleton 
identification between the two sensors (see Figure 4), with the 
thermal source providing better skeleton identification for 
certain actions – a result that can be taken advantage of in the
varying field conditions likely to be encountered. 

Another interesting result are the generally higher scores 
for skeletons generated from RGB at close range combined 
with the lower scores for these skeletons at long range. This 
validates our initial intuition that the wide-angle lens on the 
RGB-D camera would prove beneficial at short range but a 
disadvantage at long range compared to the thermal camera. In 
general, skeleton extraction confidence tends to deteriorate at 
large distances for both sensors. 

IV. CONCLUSION

Our experiments show a difference in skeleton extraction 
performance over the two sensor types based on the distance of 
the subject to the sensor. We expect additional differences 
based on the lighting and temperature conditions as the regular 
RGB video will lose contrast in the evening hours and turn to 
a black video in a night setting while the thermal sensor should 
continue to function well. In another setting like for example a 
humid green house, the atmospheric temperature might be 
close to the body temperature of a person and thus reduce the 
detection performance of the thermal sensor. As would be 
expected, subject orientation further has a big influence on 
detection performance. 

These considerations show us that datasets fitting the task 
area, sensor setup, and recording scenario are crucial to the 
development of algorithms applicable in real life.  

Figure 3: Results of running OpenPose on RGB video (top) and color-

coded thermal video (bottom).
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The recognition of actions is an important aspect of 
interacting with humans. However, this only encompasses the 
overt behavior of the humans in the vicinity of the autonomous 
robots. Equally important is the identification of the (covert) 
intentions of the humans when acting. It is from these that the 
robots would be best able to plan an appropriate response, 
whether this is providing physical assistance (e.g. moving to 
the appropriate location) or enhancing safety (e.g. proactively 
moving out of the way). Our goal in establishing the data 
processing pipeline, whose beginning is introduced in this 
paper, is to provide the data to address the issue of intention 
recognition. We will proceed to integrate more sensors which 
should lead to more robust pose estimation over a greater 
variety of conditions. In the case of the 3D LIDAR, we expect 
to gain approximate pose estimation for subjects outside the 
field of view of the directional sensors. The pipeline will 
further be supplemented with contextual information drawn 
from other robot systems, such as navigation, mapping, 
scheduling, etc. 

The completed system should react to commands given by 
workers, track individual worker progress towards a full crate 
to preemptively navigate toward the next task, and learn 
individual worker’s preferences when it comes to a 
comfortable stopping distance. 
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Figure 4: Average Skeleton detection confidence for Optris thermal sensor on the left and ZED RGB-D sensor (single RGB video) on the right. Distances on 

the X-axis from 5m to 25m, confidence values ranging from 0 to 1. Notable is the higher performance of the ZED camera at short range, but lower 

performance at long range. Also notable is the performance dependence on viewpoint. Actions facing the camera are generally captured better.
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