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Semantic enhanced navigation among movable obstacles in the home 
environment

Abstract— An autonomous household robot has to be able to

navigate through a variable environment and perform common 

household tasks. Additionally, in cluttered and narrow homes 

movement can become impossible unless obstacles are moved out 

of the way. Both challenges involve the manipulation of objects 

and a planning algorithm that can integrate the function of 

regions and objects to avoid the creation of new safety hazards 

during robot movement. We present a semantic detection 

method during path planning using a gridded semantic map to 

improve navigation among movable obstacles (NAMO) and 

support for simple household sub-tasks like cleaning a table and 

moving obstructing objects to another location. In our tests, the 

spatial planning was completed well within human reaction time, 

which is important for a natural interaction between a human 

and a robot. 

I. INTRODUCTION

Today’s mobile robots navigate on a binary map, often

scanned using Simultaneous Localization and Mapping 

(SLAM), dividing the workspace into free space and fixed 

obstacles. Some algorithms explored Navigation Among 

Movable Obstacles (NAMO), creating a ternary map (fixed 

obstacles, movable obstacles and free space). But robots 

operating in a human environment need to have a more 

complex understanding of their environment for autonomous 

navigation due to random temporary obstacles being placed in 

their way (e.g. chairs, bags) and it is frequently not possible to 

re-plan a new path (e.g. apartments with only one corridor).  

Humans can easily identify what obstacles are movable and 

require the least effort to clear a path. However, obstacles are 

not always moved to a position which would require the least 

amount of effort, because this position would block another 

path which would need clearing at another time e.g. a doorway 

or a hazardous location (like right behind a corner). While a 

corridor. traditionally is empty space in navigation it isn't 

suitable to place an obstacle there because other people need 

to move through it. Perhaps the most dramatic example is a 

fire escape. This space needs to be encoded as free to move 

through, but not free to leave obstacles in it. 

The main focus in robotic navigation has been getting from 

point a to point b. Rather than moving to a specific x/y 

coordinate humans move to a region or an object which have 

a dimension and multiple adjacent points as a valid goal 

location. Navigational planners could emulate this behaviour 

by checking a semantically annotated map. 
In this paper, we use a semantic encoded map to improve 

the NAMO quality by considering the functions of space. The 
remainder of this paper is structured as follows: Section II gives 

an overview of related work in navigation and semantic 
mapping. Section III describes our semantic detection for 
navigational planning. Section IV presents our experimental 
results. Section V discussion and finally we conclude our 
findings in Section VI.  

II. RELATED WORK

There exists an extensive literature on robot navigation 

however given the compactness of this paper we discuss only 

the two closest aspects. 

A. Navigation Among Movable Obstacles

Existing NAMO algorithms can solve very complex
environments with a large number of obstacles, but typically 
these environments are rooms with random obstacles and don’t 
resemble a household or office. e.g. one room with 20 chairs, 
tables and a few sofas[1][2][3]. The obstacle placement 
decision is also devoid of any function of space or the blocking 
of other paths. Additionally, an execution time of a few 
seconds is perceived as too long for a typical human 
interaction.  

Algorithms that divide the space into free connected space 
regions and occupied regions won’t be useful for 3D maps 
because in 3D there will be only one free space region for most 
objects which could theoretically be moved along the ceiling. 
This, however, is not a practical approach to deal with 
obstacles. 

B. Semantic Mapping

Semantic mapping has been developed to give sensor data 
a meaning similar to the human perception of the environment. 
Simple semantics exists as a topological map, circles 
representing rooms and lines connecting rooms without metric 
information [4]. A more direct encoding of semantics into a 
navigation map with bounding boxes has been done in [5]. By 
using an RGB-D camera and convolutional neural network 
(CNN) semantic mapping has been done pixel by pixel on a 3D 
point cloud map from a SLAM algorithm [6][7]. Further 
research is needed to evaluate each semantic mapping method 
and their usefulness for autonomous navigation and household 
task performance. 

In order to use the maps spatial semantic knowledge for 
complex household tasks, it needs to be combined with action-
related and common-sense knowledge as in a semantic network 
[8][9]. The knowledge relates objects to another or to regions 
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e.g. “microwave located in the kitchen” and their function e.g.
“microwave can cook food”.

III. OUR APPROACH

In order to encode different functions in a home 
environment, we utilize three layers for a 2D floor map, 
visualized as an RGB image with some predefined pixel by 
pixel encoded semantics. One layer for objects & obstacles, 
one for dynamic entities (humans, pets) and one for the room 
property or function. 

For the robot pathfinding (start to goal) we use a bi-
directional rapidly exploring random tree (Bi-RRT) algorithm 
(Figure 2) with a 5% goal bias. Bi-RRT is a variant of the 
simple RRT [10]. Simple RRT is great at exploring a large 
region of free space, but one single RRT can get stuck against 
a wall and have a hard time finding a gap like a doorway. In 
our tests, bi-directional RRT proved to be 3-10 times faster 
than a single tree, which is similar to findings in [11]. Due to 
the nature of a home robot environment – the interaction with
humans. A solution should be found within human reaction 
time. Previous robots have been found to be too slow and 
unresponsive [12]. This gave preference of simple RRT over 
RRT*. After a solution is found we employ local path 
smoothing (Figure3) for a more natural motion. 

The path planning and semantic detection (includes collision 
check) are done in Cartesian space instead of configuration 
space to avoids the recalculation of the space every time the 
robot moves an obstacle. The semantic detection of objects for 
the planner is done with OpenCV by finding the specified 
semantic value on the map and extracting its dimensions 
(contours).  During path planning in the RRT algorithms, the 
semantic detection checks the map with the bounding box of 
the robot or movable obstacle and disregards a point when the 
bounding box touches another obstacle. 

When the robot path is blocked by an obstacle the NAMO 
RRT, a simple modification to the RRT algorithm (see code) 
searches for a new collision free position that doesn’t obstruct 
the robot's path or collide with other obstacles. The 
improvement of NAMO quality is done by excluding regions 
encoded on the semantic map as valid goal positions. This 
semantic check is only done after a new node is added to the 
RRT and not every time a node is checked against permanent 
obstacles. In our tests, for example, we excluded doorways as 
valid goal positions. 

IV. TEST/EVALUATION

We perform the evaluation in Python 3.6 and single 
threaded on an Intel Core i5 2400 (3.1GHz). Ram usage is 
60MB to load the 1000x800 three-layer test map + simple UI 
interface. During path planning, an additional 20MB is used for 
the computation of the robot path and new obstacle positions. 
The map resolution is 1cm/pixel, hence representing an 
apartment of 10m x 8m. The spatial semantic knowledge data 
is stored in NumPy arrays and visualized with matplotlib as an 
RGB image. 

Pre-defined semantics and their visualization: 

 Regions (red layer): unknown, sink, sinkstorage,
TVcarpet, doorway, foodtable

 Dynamic Entities (green layer): unknown

 Objects (blue layer): unknown, plate, cutlery,
TVtable,TVstool,plant,chair,foodtable, bed, shower

After an object is moved the map gets automatically updated 
(old position encoded as free space in object layer and new 
location encoded with the value of the object) For a better 
illustration of the skills we use the unused green layer 
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(dynamic entities) to enhance the contrast between the objects 
original and new position and dimensions. 

As expected, checking a point against a list of semantic values 
takes longer than checking against a single value representing 
all obstacles. The time increase depends on the number of 
total semantic values. In our tests with 1000 known semantic 
values, the calculation time increased by a factor of 15-30. 
From 0.213s for one million single value to 3.1-6.7s for the 
same number of multiple value checks. So any path planning 
algorithm should still perform single value collision detection 
against unmovable obstacles to reduce the number of slower 
semantic checks. 

A. Move to region or object

Figure 1: Robot skill: “Move to region/object” The robot (light grey) is in the 

upper right is instructed to move to the sink(green). The red line shows the 

raw path found by the Bi-RRT algorithm and the black line shows the 

smoothed path. In light red are the original obstacle positions & the purple 

dots outline the new positions for any moved obstacle. 

Metric Bi-RRT 
time in 
seconds 

NAMO-
RRT 
(seconds) 

Robot 
Path cost 

Obstacle 
path cost 

Average 0.099 0.095 1049 199.0 

Standard 
deviation 

0.043 0.055 10.44 136.9 

Table 1: Performance analysis for the task "move to sink". For our two-

obstacle example, the planning time for the obstacles is the same as for the 

robot pathfinding. While the robot path with a fixed goal region shows very 

little variations in length the obstacle movement shows high variation due to 

a flexible goal position. 

B. Movable obstacle placement of semantic NAMO

algorithm

Figure 2: obstacle placement when considering semantics. The robot (light 

grey) is instructed to move from the lower left to the bathroom. The red line 

shows the raw path found by the Bi-RRT algorithm and the black line shows 

the smoothed path. The NAMO algorithm avoids placing the washing basket 

(light blue/purple dots) into the doorway (blue) 

Figure 3: The same navigation task as in Figure 2 without exclusion of the 

door space(blue) as a valid goal position. 

The obstacle movement cost (Table1) includes the cost of 

moving the robot and the relative size of the object compared 

to the robot. Small objects will have a negligible cost and 

large objects will have a high cost of moving. The 

performance analysis was done with 1000 samples in each 

test, a robot with a round base of 25 cm radius and an RRT 

expand distance of 20cm. For obstacles, the RRT expand 

distance is 10cm. 
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Equations for path cost: 𝐶𝑅 = ݀ (1) 𝐶𝑜 = ሺ1 + 𝐴𝑜/𝐴𝑟ሻ ∗ ݀ (2) 𝐶𝑅 = 𝐶݋݉ ݂݋ ݐݏ݋𝑣𝑖݊݃ ݐ݋ܾ݋ݎ, ݀ = ݀𝑖݁ܿ݊ܽݐݏ Co = Cost of moving obstacle, A = Area
C. Moving objects to another region

When moving many small objects compared to the robot’s 
size, the objects don’t need additional collision detection. 
With the previously shown path cost calculation it’s possible 
to calculate when it’s more efficient to move the objects 
individually or to get a known container from a nearby place 

and move multiple objects at the same time. The 

semantically encoded map already includes the location and 

dimension of the goal region, therefore eliminating the need 

to compute a path for each individual object between its 

origin and goal position. Instead we only need to compute 

one path for the robot between the two regions and a short 

path for each object from the goal region to the objects final 

position. 

Figure 4: Robot skill: “move objects to a region”. The robot moves all 
cutlery and plates (purple & purple dots) from the table(brown) to the 

sink(green). The robot path uses the same colours as before. 

V. DISCUSSION & FUTURE DEVELOPMENT

The use of semantics in navigational planning isn’t 
restricted to the RRT algorithm, for us the general nature of 
RRT allowed an easy combination of A to B navigation and 
spatial task planning for some household tasks. 

A real household robot would greatly benefit from a 3D 
semantic map, especially for small stackable objects. The 

performance of our currently un-optimized 2D representation 
was still well within human reaction time and an optimized 
version has the potential to work in 3D within reasonable 
human reaction time as well. Further evaluation needs to be 
done on a scanned semantic map instead of a pre-defined one. 

VI. CONCLUSION

We have presented a semantic detection method during 
path planning for a gridded semantic map and how it can be 
used in a cluttered home with movable obstacles. With 
execution times of well below half a second, the semantics 
consideration can improve the navigation quality without 
adding significant computation time. By combining the 
planning for object placement and robot navigation into one 
system the system could also be used for practical household 
tasks, which are not yet well developed and needed in health 
care. In the future, these spatial planning tasks have to be 
combined with general knowledge of object functions and their 
usage/grasping to create household tasks that can be executed 
without specific prior knowledge of the exact environment. 

REFERENCES 

[1] M. Levihn, J. Scholz, and M. Stilman, “Hierarchical Decision

Theoretic Planning for Navigation Among Movable Obstacles,”
Springer, Berlin, Heidelberg, 2013, pp. 19–35. 

[2] M. Stilman and J. J. Kuffner, “NAVIGATION AMONG 
MOVABLE OBSTACLES: REAL-TIME REASONING IN 

COMPLEX ENVIRONMENTS.”
[3] A. Akbari, Muhayyuddin, and J. Rosell, “Task planning using

physics-based heuristics on manipulation actions,” in 2016 IEEE 

21st International Conference on Emerging Technologies and

Factory Automation (ETFA), 2016, pp. 1–8. 

[4] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and

reasoning with heterogeneous modalities,” in 2012 IEEE

International Conference on Robotics and Automation, 2012, pp. 

3515–3522.

[5] H. Deeken, T. Wiemann, K. Lingemann, and J. Hertzberg,

“SEMAP - a semantic environment mapping framework,” in 2015

European Conference on Mobile Robots (ECMR), 2015, pp. 1–6. 

[6] R. Li, D. Gu, Q. Liu, Z. Long, and H. Hu, “Semantic Scene 
Mapping with Spatio-temporal Deep Neural Network for Robotic 

Applications,” Cognit. Comput., vol. 10, no. 2, pp. 260–271, Apr.

2018.

[7] H. Sun, Z. Meng, and M. H. Ang, “Semantic mapping and
semantics-boosted navigation with path creation on a mobile 

robot,” in 2017 IEEE International Conference on Cybernetics

and Intelligent Systems (CIS) and IEEE Conference on Robotics, 

Automation and Mechatronics (RAM), 2017, pp. 207–212.

[8] M. R. Petr Masek, “A Task Planner for Autonomous Mobile 
Robot Based on Semantic Network in Advances,” Adv. Intell. Syst. 

Comput. 393, pp. 634–639, 2016.

[9] M. Tenorth, L. Kunze, D. Jain, and M. Beetz, “KNOWROB-MAP 

- knowledge-linked semantic object maps,” in 2010 10th IEEE-

RAS International Conference on Humanoid Robots, 2010, pp.

430–435.

[10] S. M. LaValle, “Rapidly-exploring random trees: A new tool for 

path planning,” 1998.
[11] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-

exploring random trees for optimal motion planning in complex 

cluttered environments,” Rob. Auton. Syst., vol. 68, pp. 1–11, Jun.

2015.

[12] E. Martinez-Martin and A. P. del Pobil, “Personal Robot 
Assistants for Elderly Care: An Overview,” Springer, Cham, 2018, 
pp. 77–91.


	UKRAS19-Proceedings-Final_Part72
	UKRAS19-Proceedings-Final_Part73
	UKRAS19-Proceedings-Final_Part74
	UKRAS19-Proceedings-Final_Part75



