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Abstract—In this paper, a technique that reduces the

changeover time in industrial workstations is presented. A 

Learning from Demonstration-based algorithm is used to 

acquire a new skill through a series of real-world human 

demonstrations in which the human shows the desired task. 

Initially, the collected data are filtered and aligned applying Fast 

Dynamic Time Warping (FastDTW). Then the aligned 

trajectories are modelled with a Gaussian Mixture Model 

(GMM), which is used as an input to generate a generalisation of 

the motion through a Gaussian Mixture Regression (GMR). The 

proposed approach is set into the context of the openMOS 

framework to efficiently add new skills that can be performed on 

different workstations. The main benefit of this work in progress 

is providing an intuitive, simple technique to add new robotics 

skills to an industrial platform which accelerates the changeover 

phase in manufacturing scenarios.  

Keywords— Plug-and-Produce; Changeover; Learning
by Demonstration; Fast Dynamic Time Warping; Gaussian 
Mixture Regression; Trajectory Learning. 

I. INTRODUCTION

In today’s manufacturing, the introduction of a new product 
or product variants is becoming more and more common. A 
change in product requirements, however, often leads to a 
modification to the manufacturing system. In order to do these 
changes, a certain amount of system downtime will result, 
which manufacturers are keen to keep as limited as possible. 
One way how manufacturers and research approach the 
problem of product variety is through the implementation of 
flexible manufacturing systems that allow handling various 
product types [1]. As an example of a project that falls into the 
category of flexible manufacturing systems and in which the 
presented work is also set is the European project ‘open 
Dynamic Manufacturing Operating System for Smart ‘Plug-
and-Produce’ automation components’ (openMOS) [2]. The
goal of the openMOS project is the development of an 
innovative, openly accessible plug-and-produce system 
platform, which facilitates a rapid and smooth ramp-up and 
changeover of equipment such as industrial robots.  

Enhancements in robot technology increased the use of 
robots in industry with one area of interest in robot skill 
learning [3]. Learning from Demonstration (LfD) facilitates the 
acquisition of new skills for the robot as the motion can simply 
be demonstrated using motion sensors involving less 
programming [4]–[6]. An important field in LfD is trajectory
learning. Here, advantage is taken from the strength of human 
motion planning. Humans will exemplify the trajectory 
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considering special limitations and speed implications. 
However for humans, it is often difficult to keep a steady hand, 
and thus the produced trajectories might most certainly not be 
optimal so that a way of optimising the outcome is required.   

This paper proposes an approach to reduce the changeover 
time for workstations in plug-and-produce assembly systems 
by using an LfD method. As part of openMOS, this work aims 
to contribute to the growing area of research in plug-and-
produce assembly systems by proposing an intuitive 
changeover approach. This is envisioned to be achieved by 
allowing operators to build a library of desired robot skills 
through human demonstration that can be deployed using 
different types of equipment that share the same atomic skills. 
It is expected that this will lead to efficient learning of new 
skills and will ultimately decrease the delay time in changeover 
scenarios. 

II. RELATED WORK

Within the domain of flexible manufacturing systems, the 
plug-and-produce paradigm facilities the introduction, 
replacement or removal of a manufacturing device into the 
system, similar to the idea of plug-and-play in computing [7]. 
These capabilities of plug-and-produce systems allow for the 
quick introduction of a new product type.  

In literature, there is no clear definition of the term 
changeover. Generally, changeover can be described as the 
total of activities of making a production line or machine ready 
from one production run to another, which comprises the 
machine set-up and clean-up process [8]. The generation of a 
robot skill, for example, falls under the set-up phase. 

In robot skill learning, the optimisation of certain task 
execution is enabled through learning and imitating human 
motions [3]. LfD has been highly studied (e.g. [5]). One field 
of LfD that has been studied in more detail recently is the 
learning of a statistical model of a trajectory [9]. Learning a 
trajectory allows to instinctively add new necessary 
manipulation skills which are essential to handle products. 
Previous to being able to learn a trajectory from human motion, 
however, means of tracking this motion are required. Tracking 
physical motions of humans has received great attention over 
the past years [10].  

Before a motion can be recognised, the use of sensor 
technologies is required [11]. For the data collection, image- or 
non-image-based types of sensors can be used. The first type 
includes markers with an optical camera, single and stereo 
cameras, or depth sensors, whereas for the second one gloves, 
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bands and even non-wearables, such as a radio frequency-
based system, are considered.  

As a final step, gesture classification is undertaken [5]. As 
this is a machine learning problem, various machine learning 
approaches can be found in literature. Liu and Wang [11] 
provide a review of the most common approaches for gesture 
classification, amongst others K-Nearest Neighbour, Hidden 
Markov Model, Support Vector Machine and Artificial Neural 
Networks. The authors provide a comparison of the different 
approaches and conclude that in order to build on their 
advantages, a combination of different algorithms can be 
deployed. Another common approach is the application of the 
Gaussian Mixture Model (GMM) in combination with 
Gaussian Mixture Regression (GMR) [3]. 

III. METHODOLOGY

This section describes the approach that has been taken as 
an initial step of providing fast skill deployment in plug-and-
produce assembly systems. The central advantage of this 
approach is that it reduces the required time to design and 
program a new skill as it does not need extensive technical 
knowledge to programme robots. The proposed methodology 
follows the procedure as set out below.  

Firstly, a human will demonstrate the hand movement to be 
learned. This movement is tracked using a motion tracker 
system, that allows estimating an object’s position in a 
workspace through passive inferred markers. This tracking 
system has been chosen as it is non-invasive and can be 
attached to any object, in the case of this work, a handheld 
gripper. It is assumed that more than one trajectory of the same 
movement will be captured and it must, therefore, be ensured 
next that these individual trajectories are aligned for further 
processing. Then, using the Gaussian Mixture Model and 
Regression generates a new approximated trajectory. Although 
using these algorithms to cluster the dataset and generate a 
trajectory is not new, it is considered to bring advances in plug-
and-produce environments such as the openMOS framework. 
Both, the captured trajectories and the outcome of the GMR 
will be displayed to the user through a Graphical User Interface 
(GUI). Here, the user has the possibility to make small changes 
to the trajectory by, for example, removing unwanted points on 
the line via a mouse click. Through the GUI the execution of 
the trajectory on the robot side can be triggered as the human 
will ultimately have to provide approval before deploying and 
testing the skill on the robot. The final coordinates of the 
trajectory will then be provided to the openMOS framework as 
an input for this new skill. An overview of these stages is 
depicted in Figure 1. 

For this paper, the focus is on learning the trajectories from 
a dispensing task that can be used on an industrial robot. This 
is only the first step in the above presented methodology and is 
explained in more technical terms in the next subsections (see 
also Figure 2). 

A. Collected Trajectories

The collection of the demonstrated trajectories is denoted
by the set {𝑇 = 𝑝 , , 𝑝 , , … , 𝑝 , 𝑚 } =𝑀 , where M is the

number of demonstrations, m is used for indexing these 
demonstrations, and nm indicates the number of points of 

demonstration m. Each point of a trajectory is considered as a 
2-dimensional vector 𝑝 = , , … , 𝑚 , 𝑚 , for

n = 1,...,nm as for the dispensing process a flat surface is 
considered. The collected data will have to be pre-processed 
before they can be further used for the actual problem of 
generating a new trajectory. This process is explained in more 
detail in the following sections. 

Figure 1. Overall methodology and scope of this work. 

B. Pre-processing

Due to the nature of human demonstration, the sensory data
collected during each trial are noisy and differ in length 
depending on the participant’s speed. It is therefore essential to 
filter and align the collected trajectories prior to the learning 
process. To remove the noise, the Moving Average Filter was 
used, which averages subsets of the data [12]. In the next step, 
the individual trajectories were aligned in the time domain 
using the multi-dimensional Dynamic Time Warping (DTW) 
algorithm [13]. This algorithm is often used to determine time 
series similarity, classification, and to find corresponding 
regions between two-time series. DTW has a quadratic time 
and space complexity that limits its use to only small time 
series data sets. In this paper, FastDTW [14] was applied, 
which approximates DTW and has a linear time and space 
complexity. 
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C. Gaussian Mixture Model

In general, mixture modelling is a simplified approach for

density approximation of continuous or discrete data [15]. 

Such models allow for an appropriate flexible trade-off 

between model complexity and variations of the available 

demonstration data. From a mathematical perspective, mixture 

models are represented as a K component density function as 

shown in Equation  

(1). 

P pi = ∑ P k P pi | k𝐾
𝑘= (1) 

where 𝑝𝑖  is the ith data point, 𝑃 𝑘  is the prior, and𝑃 𝑝𝑖  | 𝑘  is the conditional probability density function.

Given the demonstrated trajectories, which have been 
aligned previously, the dataset consists of 2D data points. 
These data points symbolise the operator 2D hand path during 
the dispensing process. This dataset is modelled by a mixture 
of K mixture of Gaussians. Hence, Equation  

(1) can be re-written as seen in Equation (2).

P 𝑝 =  ∑ 𝜋𝑘 √ 𝜋 𝐷|∑𝑘| 𝑒− (𝑝−𝜇𝑘)𝑇∑𝑘− (𝑝−𝜇𝑘)𝐾
𝑘= (2) 

where {𝜋𝑘 , 𝜇𝑘 , ∑𝑘} are the kth Gaussian parameters, which
denote the prior, mean, and covariance respectively. In this 
paper, we assume that the number of Gaussians is equal to the 
straight lines in the reference trajectory which is four. 

C. Trajectory Generation

To create a general 2D trajectory form the mixture of
Gaussian, GMR is applied [16]. In such a case, the sequential 
time steps (temporal data) are used as input data to generate the 
corresponding 2D trajectory values through regression. For 
each component in the GMM, the input (temporal data) and 
output parameters are separated such that the mean and 
covariance matrix of the kth Gaussian component is defined by 
Equation (3).  𝜇𝑘 = [𝜇𝑘𝜇𝑘]

∑𝑘 = [ Σt,k Σts,k Σst,k Σs,k ] (3) 

The conditional expectation of 𝑝{ ,𝑘}, given 𝑝𝑘 and the

estimated conditional covariance of 𝑝{ ,𝑘}, given 𝑝 , are

presented in Equation (4). p̂{ ,𝑘} = 𝜇𝑘 + Σst,k(Σt,k)− pt − 𝜇𝑘Σ̂{ ,𝑘} = Σs,k − Σst,k Σt,k − Σts,k (4) 

According to the Gaussian distribution parameters of the kth 

component, the estimated variable �̂�{ ,𝑘} and covariance �̂�{ ,𝑘}
are mixed. Therefore, �̂�{ ,𝑘} can be used to estimate the mixing

weighting 𝛽𝑘 of component k as shown in Equation (5).𝛽𝑘 = P k P(pt|k)∑ P i P(pt|i)𝐾𝑖= (5) 

Successively, the conditional expectation of 𝑝 , given 𝑝 ,
and the conditional covariance of 𝑝 , given 𝑝 , can be estimated
by using Equations (4) and (5) as given in Equation (6). 

�̂� =  ∑ 𝛽𝑘�̂�{ ,𝑘}𝐾
𝑘=∑̂ =  ∑ 𝛽𝑘 ∑̂𝑘𝐾

𝑘=
(6) 

Evaluating {�̂� , �̂� } at different time steps 𝑝  with the
associated covariance matrices consequently gives an 

estimated trajectory �̂� = {�̂�𝑇 , �̂� }. The time step between two
consecutive points depends on the process and controller 
requirements of the robot and the dispensing process. It is 
worth mentioning that only the means and covariance matrices 
of the modelled Gaussians are needed to reproduce a new 
trajectory. 

IV. EXPERIMENT

As a first step towards achieving fast skill deployment in 
plug-and-produce assembly systems, a manual dispensing 
experiment was conducted for an initial data collection. For 
this ethics-approved experiment (Ethics Approvals (Human 
Participants) Sub-Committee at Loughborough University), a 
total of twenty participants was recruited and each participant 
was asked to produce one zigzag pattern on a prepared 
aluminum plate (6.5x9cm). The main physical components of 
the setup were a time-pressure dispensing unit (Fisnar 
JB1113N), which was connected to a syringe and a Schunk 
gripper with 3D-printed handle. Vicon markers were attached 
to this handle to capture the trajectories the participants 
performed. Additionally, a push button was fixed to the handle 

Figure 2. More detailed overview of the technical work done within the scope of this paper. 
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allowing to trigger the dispensing process through a Raspberry 
Pi 3. A picture of a participant doing the task and exemplary 
outcomes can be found on the left-hand side of Figure 1. 

V. RESULTS AND DISCUSSION

The outcomes of applying the previously proposed 
methodology to the collected data are illustrated in Figure 3. 
Figure 3a) shows the collected trajectories after they have been 
aligned with the multi-dimensional DTW algorithm. As can be 
seen, the collected trajectories contain several outliers and 
noise. These are due to the measurement errors of the Vicon 
tracking system as well as reflective objects within the 
workspace that were mistakenly considered as markers. Figure 
3b) visualises the outcome of applying GMM and GMR to the 
pre-processed data. The GMM was instantiated to find four 
clusters, each resembling an edge of the pattern. Based on this, 
the learned GMR was used to generate a new trajectory. The 
trajectory can be seen in better detail in Figure 3c). Compared 
to the trajectories produced by humans, the generated trajectory 
is relatively smooth.  

One limitation of the experimental setup that was noticed 
is that the motion was captured as long as the push button on 
the gripper was pressed to dispense the material. Due to the 
viscosity of the dispensed material, some participants released 
the button before the nozzle was above the last point of the 
pattern to let the material drop. This problem can, however, be 
easily solved in using a different dispensing material with 
higher viscosity or programming of the motion tracking. 

VI. CONCLUSION AND FUTURE WORK

In this paper, the first stage towards the transfer of a human 

skill into a manufacturing cloud system is presented to reduce 

the need for using conventional robotics programming 

approaches in similar context. The following has been shown: 

1) Collection of trajectories while skill is demonstrated by

human, 2) filtration of collected data and alignment of

different trials, 3) modelling of demonstrated trials using

Gaussian Mixture Regression. Future work will include the

reproduction of the learned skill on the robot side ensuring to

meet the semantic description of the openMOS skill. This will

require to validate the reproduced trajectory and add the GMR

model to the openMOS cloud system.
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