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Abstract—For several decades, the pattern recognition of

movement and gesture shows promise for human-machine 

interaction in many areas.  A remarkable application in this area 

is gesture recognition for upper limb amputees using surface 

electromyography (sEMG) to capture the muscle activation as 

electrical signals. Another well-known application of in this field 

is human activity recognition (HAR). Most HAR applications are 

based on raw sensor inputs such as accelerometer and gyroscope 

signals which show its ability in learning profound knowledge 

about movement recognition [1].  Within the field of signal-based 

gesture recognition, traditional machine learning (ML) 

approaches have been widely used [2]. ML models give a high 

accuracy with large amounts of hand-crafted, structured, and 

under controlled data. However, traditional ML models require 

lengthy offline and batch training which is not incremental or 

interactive for real time application. In addition, ML models 

always cost a long period of time to extract a set of reliable 

features especially for high-dimensional, complex and noisy data 

because of the various situations in practical applications. 

Besides the ML methodologies, in recent years, the use of deep 

learning (DL) algorithms has become increasingly more 

prominent for their tremendous ability to extract and learn 

features from large amounts of data [3]. Compared to ML 

models, DL models make it possible for artificial intelligence to 

train the networks without hand-craft feature extracting. The 

aim of this work is to develop DL based methods for human 

movement and gesture recognition from time-series signals such 

as obtained using sEMG and IMU signals. We would like to 

understand the performance of DL for time-series signal analysis 

and accuracy, as to our knowledge, this aspect is still 

understudied. A series of experiments have been conducted to 

achieve it with different datasets and signals. The DB1 is a HAR 

dataset from the UCI repository. The DB2 and DB3 are sub-

datasets of Ninapro database contains the recordings of 17 

gestures from subjects by collecting sEMG signal. There are 4 

different DL models designed for the experiments to find out the 

optimum solution by performance comparison: a 1-D CNN, a 

LSTM model, a C-RNN and 3+3 C-RNN. This is an extended 

abstract of a poster for the conference. The details of datasets and 

models are described in the methodology section, followed with 

the result section to present the results of different DL models on 

datasets.  

I. METHODOLOGY

A. Models

In the experiment, 4 DL models were used for gesture and 
movement recognition. The first one is a 1-D CNN which was 
inspired by [4]. The model processes separable convolution 

operation on each channel of the data rather than do the 
convolution on the entire input matrix. There are 2 
convolutional layers in the model with max pooling and 
activation function applied after each convolution layer. The 
output of several separable convolution layers is the feature 
maps of inputs from different channels. And a fully-connected 
layer will be applied on these nodes, following by the classifier 
to generate the result. The second competing model is a basic 
LSTM with the sequence length of 128 which equals to the 
sliding window size. There is a dropout layer after the LSTM 
layer with problem rate of 0.8 to overcome the overfitting 
problem. And a fully-connected layer will be applied on these 
nodes, following by the classifier to generate the result. 

The third model and fourth model is hybrid model 
combined with CNN and RNN. Convolutional layers are 
applied as a feature extractor in the structure. The output of the 
convolutional layers is the feature map of the input signal 
which contains useful information for other layers. The LSTM 
layers focus on the influence from previous time point and 
generate a probability map for each input. In the early stage of 
the experiment, a basic C-RNN model was developed 
including 1 convolutional and 1 recurrent layer. After some 
literature reviews and modifications, another advanced C-RNN 
model was built with 3 convolutional layers and 3 recurrent 
layers. In this section, the structure of the 3+3 C-RNN is 
described with more details.  

As shown in Figure 1, the input of the 3+3 C-RNN model 
should be a signal piece fixed by a sliding window. The width 
of the input is in the time domain, and the size equals to the 
window size w. The height of the signal should always be 1. C 
represents the number of input channels while the signal from 
each channel will be fed into 1-D convolutional layers 
separately. For one round of training, a batch of such signal 
piece will be fed into the network where the batch size equals 
to i. As Figure 2 shows, the number of filters of the 1st Conv 
layer is designed as C*2, with the filter size of 2 and stride size 
of 1. The zero-padding approach is applied after each Conv 
layer to generate a feature map (FM) in the same width. The 
output format of 1st Conv layer should be [B(i), w, C*2]. The 
2nd and 3rd Conv layers are designed to have the same filter size 
and stride size but twice of the number of filters. The output of 
the 3rd Conv layer should be [B(i), w, C*8]. It is worth 
mentioning that, the parameters in the layers are controllable 
for a better performance. And different from traditional CNN, 
there is no max pooling layer after convolution which aims to 
keep the integrality of data and ensure the fixed length of the 
sequence to feed into LSTM layers.  
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Figure 1.  Structure of 3+3 C-RNN. 

As shown in Figure 1, the output of convolutional layers are 

sequences of the feature map. These feature sequences will be 

reshaped into a node for recurrent layers. The width of the 

sequence is treated as the time period of recurrent layers which 

equals to w. Then, a dense layer will transform these nodes 

and feed them into the LSTM cells, each with the dimension 

LSTM size (Ls). This size parameter is designed to be 3 times 

larger than the number of channels, which is the similar way 

in the embedding layers in text applications where words are 

embedded as vectors from a given vocabulary.  Then the 

sequence with the length of window size will be feed into three 

LSTM layers continuously. The input of each layer is the 

output from the previous layer. The dropout function is 

applied with problem rate of 0.8 for 1st and 2nd layers. And for 

the 3rd recurrent layer, the problem rate will be 0.5. In addition, 

the gradient clipping approach is added to improve training by 

preventing exploding gradients during back propagation. Only 

the last member of the sequence at the last LSTM layer is used 

as the final result, which will be feed into the fully-connected 

layers and a Softmax layer for classification.   

B. Datasets

Database 1: The DB1 used in the experiment is the HAR 

dataset from the UCI repository. The dataset is taken from 

with 30 subjects within an age range of 19-48 years. Each 

volunteer was asked to perform six movements (walking, 

walking upstairs, walking downstairs, sitting, standing and 

laying) wearing a smartphone on the waist. The 

accelerometers, gyroscope, and body accelerometer 

signals were recorded at a sampling rate of 50 Hz. The 

dataset was separated into two parts randomly where 70% 

of the set was selected as training set and 30% as the 

testing set. In the pre-processing step, noise filters were 

applied to the signals. The signals sampled in the fixed-

width sliding window of 2.56 sec with 50% overlapping 

[5].   

Dataset 2: The DB2 and DB3 used in the experiment are 

sub-datasets of Ninapro database which provides a 

repository of sEMG data. sEMG measures the electrical 

activity when muscles are moving and exercising. It is an 

important attribute of the nervous systems aimed at 

collecting more muscular force or compensating for force 

losses. The purpose of the Ninapro project is to aid 

research on advanced hand myoelectric prosthetics with 

public datasets [6]. Currently, there are 7 databases 

available, each containing results from a series of 

movements where volunteers performed sets of hand, 

wrist and finger movements in controlled laboratory 

situations. The DB2 is the sub-dataset 5 of Ninapro 

database which contains data acquisitions of 10 subjects. 

The sEMG signals in the set were collected using two 

Thalmic Myo armbands with 16 electrodes, providing the 

upsampled sEMG signal at 200 Hz. The armbands were 

fixed close to the elbow according to the Ninapro 

standards. Each subject repeats 17 different hand 

movements for 6 times. Each movement lasts for 5 seconds 

and following by 3 seconds of rest as shown in Figure 3. 

Figure 2.  17 gestures in Ninapro databases. 

The subject 1-7 were treated as training set and subject 

8,9,10 were selected as the testing set. 

Dataset 3: The DB3 is the sub-dataset 2 of Ninapro 

database, which contains data acquisitions of 40 subjects. 

The sEMG signals in the set were collected using 12 

electrodes from a Delsys Trigno Wireless System, 

providing the raw sEMG signal at 2 kHz. The type of 

movements of DB3 is same as DB2. The dataset was 

separated into two parts randomly where 70% of the set 

was selected as training set and 30% as the testing set. 

More details and attributes information of DB2 and DB3 

are available at http://ninapro.hevs.ch/node/7.  

II. RESULT

For each model, the learning rate is set at 0.0001 and the 

epoch size is set as 1000. The batch size is designed as 600. 

The training and testing are implemented on a computer with 

GPU of GTX 1080ti and CPU of Intel(R) Core(TM) i7-7700k 

@ 4.20Ghz. The programming platform is Tensorflow with 

python. Table 1 and Figure 3 show the average accuracy of 

different models when applied on datasets. It is obvious that 

3+3 C-RNN gives the best performance on three datasets, 

which are 90.29%, 83.61% and 63.74%. For the Ninapro 

datasets (DB2 and DB3), 1-D CNN produces aresult of 53.17% 

when compared to other models. It is clear that for these 2 

datasets, the models containing LSTM layer give a better 

accuracy, which means the relationships between different 

http://ninapro.hevs.ch/node/7
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time points have more influence on the sEMG signal 

recognition.  

TABLE I. PERFORMANCE OF DL MODELS 

Models DB1 DB2 DB3 

1-D CNN 88% 72.49% 52.17% 

LSTM 86.8% 78.13% 55.3% 

C-RNN 87.62% 82.1% 59.31% 

3+3 C-RNN 90.29% 83.61% 63.74% 

Figure 3.  Experiment results of DL models on different dataset 

However, for the HAR dataset, 4 models produce a high 

accuracy (above 85%). The one reason is the HAR database 

has fewer classes (6) than the Ninapro database (18) which 

makes it easier to classify. In addition, the class of ‘rest’ in 
Ninapro datasets seems to cause a decrease of the accuracy. 

It is also worthy to mention that a large number of subjects 
(40 for DB3) with insufficient sample data cause a confusion 
for DL models and lead to a lower accuracy. Theoretically, this 
situation should be ameliorated if more sample data are fed to 
the networks. For the future experiments, we plan to compete 
the models with other existing researches using traditional ML 
or DL models. In addition, we will have a series of trials on 
different hyperparameters such as window sizes, filter sizes 
and batch sizes. We should also improve the structure of 3+3 
C-RNN based on the experiments mentioned above to get a
better performance in the future.
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