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Abstract— Task-parametrised learning from demonstration

(TP-LfD) is suitable for programming collaborative robots 

(cobots) for collaborative industrial tasks, since the algorithm is 

able to encode complex mappings between observed states to the 

cobot’s actions. TP-LfD relies heavily on perception, since

detected objects and people serve as task parameters. This is a 

challenge since 1) industrial objects are difficult to detect due to 

their irregular shapes and sizes and 2) using marker stickers for 

detection is not desirable in manufacturing scenarios. Moreover, 

another challenge of using TP-LfD is that although it is an 

intuitive programming method, it is difficult for operators to 

initialise it due to their lack of underlying theoretical knowledge 

as opposed to the researchers that previously tested the 

algorithm. We aim to address these two challenges 

simultaneously by building an automatic task parametriser in 

which reinforcement learning is used to assign task parameters 

from a set of randomly detected visual features. In this paper, we 

introduce our solution and the progress done so far. 

I. INTRODUCTION

Industrial parties are growing increasingly interested in 

implementing human-robot collaboration (HRC) on their shop 

floors. Collaborative robots (cobots) bring many benefits to 

manufacturing including mass customisation and improved 

operator working conditions. For these benefits to be attained, 

the cobot must have a high level of intelligence and flexibility 

since it will be working alongside a human. It must act 

according to real-time operator and object states while 

respecting task requirements. The cobot should ideally also be 

easily programmable by a non-expert operator to ensure quick 

deployment and adjustability. One promising algorithm is 

learning from demonstration (LfD), in which the operator can 

intuitively teach the cobot an industrial task by recording a few 

demonstrations of it being done. Different variants of learning 

from demonstration are able to capture different levels of 

mapping complexities between states and actions. Task-

parametrised learning from demonstration (TP-LfD) is 

thought to be able to capture the widest range of task instances, 

making it a generic algorithm for learning the widest range of 

collaborative industrial tasks [1]. 

However, although many algorithms exist that enable 

humans to intuitively teach cobots complex tasks, these 

algorithms are not yet popular in the industry. There are two 

main reasons behind this: 1) Some of these algorithms are not 

as intuitive to use by operators as researchers think they are. 

For example, in LfD, researchers record demonstrations while 

understanding the underlying theory behind the algorithm. 
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These demonstrations are more likely to yield the desirable 

results as opposed to ones recorded by operators. Moreover, 

assuming perception is going to be achieved using sticker 

markers, the operator must decide where to paste the markers 

as to avoid occlusion, respect the shape and function of the 

work piece, avoid redundancy and not miss key objects, etc. 

This is often a challenge and could yield to errors if not done 

well. 2) These algorithms heavily rely on cobots’ perception 
abilities, since the cobot must localise and detect relevant 

objects and people in a stochastic environment. Deep learning 

solutions aren’t useful to identify industrial objects due to the 
lack of large training data on industrial parts. Pasting stickers 

is undesirable on manufacturing products and can be 

impossible due to part size and shape. Therefore, in this paper, 

we propose a solution to address the two main problems 

above. 

In this paper, we discuss the methodology, while 

highlighting the contribution of this project. Moreover, the 

project progress is described and the future steps are outlined. 

II. METHODOLOGY

The steps of our algorithm are outlined in Figure 1. 

Demonstrations are done by kinesthetic teaching and recorded 

by logging cobot joint data (angles and torques) and an RGB 

recording of the scene. The RGB images are used to detect and 

localise objects, in order to provide input to the TP-LfD 

algorithm. RGB images are inputted in a perception algorithm 

that extracts prominent visual features, further described in 

Section II-B. Since a large number of visual features will be 

detected, they are inputted into a reinforcement learning (RL) 

algorithm, briefly described in Section II-C, that filters and 

eliminates those with a high chance of irrelevance or 

redundancy. This RL policy updates according to a cost 

function calculated based on the performance of the TP-LfD. 

The TP-LfD outputs a Gaussian Mixture Model (GMM), as a 

mapping between the task parameters, which are the visual 

features, and the cobot joint data. The cobot will be able to 

reproduce the tasks recorded after performing Gaussian 

Mixture Regression (GMR) on the trained model.  

A. TP-LfD for Industrial Tasks

Human-robot collaboration is identified as instances when

the human and the cobot are working in close proximity 

without a barrier. A list of industrial human-robot collaboration 

tasks was identified and categorised (Figure 2) as follows: 

 Independent: industrial applications done by the cobot

after receiving instruction from the human, e.g.
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drilling, pug-in-hole, screwing, tightening bolts, 

surface finish, etc… The human and the cobot work in

close proximity. 

 Simultaneous: the cobot and the human perform

similar actions towards the same goal, e.g. pick-and-

place, assembly, etc... In this situation, both the cobot

and the human can perform the set of actions, but

distribute the actions in an optimised way according to

time and space constraints.

 Sequential: the cobot performs sequential actions with

the human, towards the same task goal, e.g. fetch,

handover, pick-and-place, assembly, etc… The cobot
should ideally understand and cater for the task needs

as well as human action preference.

 Supportive: industrial applications in which the cobot

is aiding the human during the task, e.g. co-

manipulation, co-lifting, fixture, soldering,

illumination, etc… Here, the cobot can be compliant,
allowing the human to move it around. The cobot

adjusts its actions according to the pace and position of

the human, as well as according to task progress

In the four task categories, we identify 3 different motion 

types: 
 Safe motion: the start and end location are known and

the path is optimised/planned for collision avoidance

and energy minimisation, etc.

 Compliant motion: the human is able to move the

cobot manually.

 Constraint motion: the cobot follows a predefined

path. This also included paths of zero length, i.e. when

the cobot has to be rigid in a fixed position.

Ideally, the learning from demonstration algorithm should 

be able to learn the different motion types. Rozo et al. showed 

that TP-LfD is capable of learning the difference between 

compliant motion and constraint or safe motion [2]. 

Moreover, TP-LfD encodes variance and hence, it can 

differentiate between safe and constraint motion such as in 

[3]. 

TP-LfD can also capture locational and temporal 

constraints (motion-level actions), such as the cobot 

accommodating the position and the pace of the human 

during a supportive task [4]. This makes it suitable for 

supporting most of the HRC tasks in the four categories 

mentioned above. 

Regarding task-level action decisions, e.g. subtask 

sequencing and scheduling, this can be modelled using 

Hidden Markov Model’s such as in [5]. This would not

interfere with the TP-LfD learnt model but rather would 

overlay it.  

B. Reinforcement Learning on Frames of Reference

Although TP-LfD automatically calculates the relevancy of

a task parameter, it will perform better if given a few task 

parameters of high chance of relevancy. Huang et al. were the 

first to tackle the problem of optimizing task parameters 

(frames of reference) in TP-LfD [1]. In their work, several 

frames of reference are initialised. Then, a reinforcement 

learning algorithm is used to shift the pose of these frames 

such that a task-specific cost function is minimised. Moreover, 

Huang et al. also suggest an automatic frame selection 

algorithm [1]. Given a number of frames, their algorithm is 

able to identify which frames play the biggest role in 

minimising the cost function. This helps eliminate frames of 

reference that have low influence on learning which speeds up 

computation and improves performance.  

There are several limitations in the work of Huang et al. [1]. 

First, they do not tackle the question of how to visually detect 

frames of reference, but rather they are specified as fixed 

positions with respect to the cobot’s end-effector. This

eliminates cases in which the frames of reference are 

intrinsically defined on non-static objects. Second, in 

automatic frame selection, different subsets of frames are 

iteratively combined to assess different combinations of 

frames. This can get very computationally expensive as the 

number of frames increase. Third, each frame is defined as a 

duple {At, bt}(j) where At
(j) is the rotation matrix and bt

(j) is the 

Figure 2 Categories of human-robot collaboration in industrial 

scenarios. 
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Figure 1 Flowchart showing our algorithm. 
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translation vector of frame j at time step t. The RL algorithm 

updates At
(j) and bt

(j), therefore, adjusting the pose of the 

frames of reference. This is not suitable when the frame of 

reference is visually detected and dynamic rather than 

manually specified and static.  

In this project, we aim to combine a generic frame of 

reference detector with an automatic frame selector/optimiser. 

In a generic industrial task, the cost function should guarantee 

path optimisation and obstacle avoidance, making the cost 

function in [1] suitable. The update function is adjusting a 

relevancy score of each frame as well as a redundancy vector. 

The relevancy of each frame would help eliminate frames 

belonging to objects and locations irrelevant to the task. The 

redundancy vector would identify frames that belong to the 

same object. That way despite their relevancy, only one is 

incorporated in the TP-LfD. Moreover, if one frame is 

occluded in some portion of the demonstration, another frame 

from the same object/location is identified using the 

redundancy vector and used instead. We define our frames as 

a quadruple {At, bt, r, R}(j) where r is the relevancy score and 

R is the redundancy vector, a (J-1) vector where J is the 

number of frames of reference. Ri
(j) is a score indicating the 

probability of frame i and j belonging to the same 

object/location.  

C. Visual Features as Task Parameters

In TP-LfD, task parameters are usually specified as frames

of reference with respect to which the cobot’s motions is 
encoded.  Task parameters can be locations in fixed space, e.g. 

corner of work table, or a point on an object, e.g. plate center, 

or action point of a tool, e.g. knife tip. These points are often 

marked with stickers, which are easily localised by the camera. 

In this project, we are looking to use visual features instead of 

stickers. Visual features are things like corners and edges. For 

a visual feature to be suitable as a frame of reference, it should 

satisfy certain conditions: 

 Uniqueness: The feature should be relatively unique

to the object/location to be localised.

 Has 6D pose: A 6D pose should be definable for the

feature or through the feature.

 Easily detected and tracked: The feature should be

prominent, as to be easily detected and identified from

several viewpoints.

To obtain features of such characteristics, we aim to explore 

two main options:  

1. Extracting them from feature layers of deep learning

object pose estimation networks, such as Deep-

6DPose [6] which takes 2D images as input.

2. Obtaining them from interest point detection deep

learning networks, such as SuperPoint [7]. Figure 3

shows an example of interest points detected in a

scene, extracted from [7].

One object can have more than one prominent feature, 

which if grouped together, can help solve the problem of partial 

occlusion. 

III. IMPLEMENTATION (PROGRESS AND PLANS)

This project is divided into three main stages, reflecting the 

different algorithmic blocks mentioned in the methodology: 1) 

validating TP-LfD in industrial scenarios, 2) validating RL to 

automatically select frames and 3) using visual features as 

frames of reference.  

The TP-LfD was first validated in simulation for a co-

grasping task. In this task, an object was graspable from several 

sides. A leader agent chooses the closest side to grasp while the 

follower agent (the cobot), has to grasp the opposite side. This 

task was specifically designed to check the performance of TP-

LfD on synchronised motions (the follower agent moved at a 

pace similar to that of the leader agent) and on conditional 

actions (the location of grasping of the follower agent was 

dependent on that of the leader agent’s), which are two 
important attributes of HRC industrial tasks. The results, and 

given TP-LfD’s performance on other scenarios in literature,

  (a)   (b)  

 (c) (d)  

Figure 4 Examples from the recorded demonstrations of industrial sub-tasks, with battery assembly parts. (a) Pick and place from variable to 
variable positions. (b) Pick and place from variable to fixed positions. (c) Collaborative sequenced bolt tightening. (d) Handover task.

Figure 3 Example of interest point detection from SuperPoint [7].  
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were satisfactory to consider TP-LfD as a promising generic 

programming algorithm for HRC industrial tasks.  

Next, real-life training data was collected from an industrial 

scenario of a collaborative car battery assembly. This assembly 

process is usually done manually. However, it involves a few 

tedious tasks such as stacking battery holders, screwing bolts 

and carrying heavy parts. Therefore, we have chosen to explore 

the possibility of converting it into a collaborative task. We 

extracted four simple subtasks from the battery assembly 

process and recorded them as demonstrations: 

 Pick-and-place from variable to variable positions

(Figure 4(a)): In this scenario, we recorded the cobot

picking up a battery box from one side of a table and

placing it on the other end of the table. This is

analogous to scenarios in which the cobot fetches

objects for the human to work on, such a heavy battery

storage boxes.

 Pick-and-place from variable to fixed positions

(Figure 4(b)): In this scenario, we recorded the cobot

picking up a battery box from one side of the table

and sliding it into a precise location on a cooling

plate. Sliding onto the plate is a constraint motion to

be learnt by the TP-LfD.

 Tightening bolts (Figure 4(c)): In this scenario, the

human places four bolts in random locations on a

cooling plate in a random sequence. The cobot

follows to touch the tip of the bolt in the same

sequence. This is to learn action sequences as well as

to generalise over arrayed motions.

 Handover (Figure 4(d)): In this scenario, the human

changes his hand position and the cobot follows the

hand. This is to teach the cobot to adjust to the

human’s pose and pace.
The demonstrations were recorded with sticker markers 

as task parameters, as an initial step in the project. In the first 

step of the project, we aim to learn the tasks using TP-LfD 

with well-placed markers as task parameters. This will give us 

an intuition on the performance of TP-LfD on our specific 

tasks. This will give further guidance on the implementation 

of the other project stages. The recording of the demonstration 

and extraction of marker poses was further proof of the 

challenges faced when trying to use sticker markers in an 

industrial scenario, namely occlusion, size limitation, and task 

obstruction.  

In the second stage of the project, we aim to validate the 

RL algorithm on demonstrations with an abundance of 

randomly-placed markers. Third, we aim to learn from 

marker-less demonstrations in which visual features are the 

task parameters.  

IV. CONCLUSION

Task parameterised learning from demonstration (TP-LfD) 

is a generic algorithm suitable for intuitively programming 

collaborative robots (cobots) for industrial tasks. TP-LfD 

requires the user to specify “frames of reference” with respect 
to which the cobot’s motion will be encoded. These frames of

reference must be relevant to the task, easy detectable and not 

prone to occlusion. Sticker markers have been used to specify 

such frames. However, using sticker markers is not desirable 

in industrial scenarios. Therefore, we propose the use of 

randomly detected visual features as frames of reference. If 

given a large number of frames of reference, as opposed to a 

select few, TP-LfD will decrease in performance. Therefore, 

we need to add a reinforcement learning algorithm to filter 

through the large set of visual features, so that only a few are 

passed on to the TP-LfD as frames of reference. In this paper, 

we present this research problem and outline our 

methodology, progress and future works.   
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