
2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

100



Abstract— This paper describes the development of a

simulated production demonstrator, used in the development of

the openMOS plug-and-produce architecture. Primarily

designed to allow synthetic testing of plug-and-produce

technologies, the intention is to simulate real production

hardware, such that there is no perceivable difference to the

production controller. Communication with the main

production controller is achieved via network, using individual

embedded computers to act as PLC based ‘device adaptors’.
Each production device is also either simulated using the same

embedded computer, or externally on a more powerful

computer, with simulation specific information (such as

material flow) transferred using ROS. Testing has proven the

concept to work well, allowing for a larger demonstration of the

openMOS project but at a fraction of the cost.

I. INTRODUCTION

The global manufacturing industry is currently moving to
the next generation of automation, often termed ‘Industry
4.0’. One goal of this effort is to increase efficiency, allowing
more products to be created to help satisfy the increasing
global demand for consumer goods. At the same time, smart-
manufacturing can also be used outside of traditional mass
production, offering products in smaller numbers but with
other advantages; such as reduced time-to-market, increased
product complexity or lower production cost.

As automation equipment becomes more prevalent, Small
and Medium-sized Enterprises (SMEs) are now rapidly
investing in robotics and equipment previously only available
to the largest and most technology advanced of companies.
Although much of the technology is the same, SMEs face
different challenges to large companies, typically due to costs.
Unlike large companies which can afford bespoke solutions,
SMEs are often limited to using existing “Off-the-shelf”
equipment, sourced from whichever supplier is most cost
effective. Production systems are then created by integrating
equipment from multiple suppliers, often including ‘legacy’
systems with very low levels of automation.

To simplify this process and make the benefits of smart
manufacturing more obtainable, efforts are being made to
develop unifying “smart-automation” architecture, capable of
integrating varied equipment into a cohesive system. This
form of architecture must combine both software and
hardware elements, to communicate and control the diverse
range of equipment used in manufacturing. The work
described in this paper has been undertaken during the
development of such a system, as part of the openMOS
(Open-source Manufacturing Operating System) project [1].

*Research supported by the European Commission.

W.H. Eaton is with the Intelligent Automation Centre, at Loughborough

University, UK. (e-mail: w.h.eaton@lboro.ac.uk).

Figure 1. High-level openMOS Architecture for native and legacy

equipment

A. openMOS Architecture

The openMOS project is an openly-accessible software-
architecture, intended to provide a standardised platform for
automation in manufacturing. One of the key goals of the
project is to provide ‘plug-and-produce’ (P&P) [2]
functionality, allowing any compatible equipment to be
integrated into a system with minimal manual setup.
Although other P&P systems have been proposed, they
typically focus on low level integration, such as local-
discovery, where each device announces itself upon
connection [3] [4].

Although such functionality is required, these systems do
not currently attempt to solve the more difficult task of
conveying to the rest of the system what the new device can
accomplish. For openMOS, this is achieved by abstracting the
product from the equipment as much as possible. For a device
to be compatible, its capabilities must be encapsulated as
‘skills’. (These could be entirely unique or highly generic
skills such as ‘hole drilling’.) To provide P&P functionality,
each device declares its skills and parameters to the overall
system upon initial connection. Each product is then defined
using a ‘recipe’, which is an ordered list of skills which must
be applied to the input material for the final product to be
created. As transportation between equipment is also
considered, the most efficient flow of material through the
manufacturing facility is automatically determined. These
features are intended to facilitate ‘Flexible automation’, [5] in
which either existing equipment can be rapidly reconfigured
to meet changing demand, or new equipment added to
increase capability.

Development of a Simulated Production Environment for
Plug-And-Produce Architecture Testing

William Eaton

DOI 10.31256/UKRAS19.27

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

101

Figure 2. High-level openMOS Architecture for simulated equipment

During production, the core functionality requires all
devices to be connected to a common Manufacturing Service
Bus (MSB) [6] running on a local network, as shown in
Figure 1. The MSB is used to transmit “skill” requests and
sensor data, providing every device access to any data it
requires. Overall control of the production task is achieved
via an agent-based Cloud Management System (CMS). For a
device to be openMOS compatible, it must fulfil both
hardware and software requirements. Although new
production devices featuring openMOS are natively
compatible, existing devices are usually not equipped to
support P&P interfaces and may lack network connectivity,
making interfacing difficult. Therefore, legacy support is
introduced through ‘device adaptors’ which interface between
the device and the MSB. Each DA is essentially a small
embedded computer, which converts openMOS skill
commands into an equipment specific interface.

B. Simulation

For any automated manufacturing environment, the cost
of equipment represents an enormous initial investment. As
the openMOS architecture has been co-developed by several
SME’s and academic institutions, the scale of testing has been
limited. Therefore, although several physical production
demonstrators have been created, each has been a compact
representation of a specific capability of the overall
architecture. Instead, it was decided that a simulated approach
could be used to demonstrate openMOS capabilities at a
larger scale. Furthermore, the development of a simulation
approach would be useful for any SME wishing to adopt the
openMOS platform, allowing them to verify the functionality
of the system without applying it to their production
environment. This paper presents the development of a
scalable approach to virtual system development, intended to
provide multiple levels of fidelity.

II. SIMULATOR REQUIREMENTS

A. Computational Hardware

Although the term ‘simulator’ is used here to describe the
entire system, it should be recognised that there are two
distinct parts; the first being the openMOS architecture itself.
For the results to be meaningful, openMOS must be deployed
using hardware comparable to what would be used in a
production environment. This applies to both the computers
which run the software, as well as the networking equipment
and interfaces for each machine.

The second part is the simulated plant operations used to
produce representative data. At the most basic, this consists of
responding to openMOS skill requests and replicating the
sensor data that would be created by actual equipment. As a
single production facility could include many hundreds of
connected devices, the computational requirements could be
quite large, especially for high fidelity simulation. Therefore,
as the primary purpose of the simulation is to test the
performance of the openMOS control system, it is essential
that the simulator must be implemented in a way does not
affect the performance of the MSB. This is most easily
achieved through hardware separation, in which openMOS
and the simulator are run on independent equipment.
Moreover, as using a single computer limits the scale of the
manufacturing process which can be modelled, a distributed
computing approach is to be used; with multiple computers
working in conjunction to produce a facility scale simulation.

B. Distributed Computing, Networking and Device Adaptors

To ensure that the demonstrator is representative, the
interface between openMOS and the simulation must
replicate what would be found on an actual deployment. One
critical element is that the openMOS communication
protocols rely on each device having a unique IP address, to
ensure that each device can be separately addressed by the
controller. Returning to Figure 1, there are two methods for
openMOS to interact with hardware:

 Natively supporting openMOS within the hardware
controller itself

 Using a dedicated openMOS device adaptor to support
legacy equipment.

Native support of openMOS is the eventual goal of the
project, with manufacturers producing devices already
compatible with openMOS installations. However, as the
devices within this work are simulated, such an approach
would require including openMOS interface protocols
directly within the simulation. The downside of this approach
is that any latency in the simulation could introduce delays to
the MSB which are actually specific to the simulator, rather
than openMOS itself. Furthermore, although it is possible that
both network interface and controller could be virtualized, to
ensure compatibility it is far simpler to use separate physical
devices. This also allows the ‘Plug and Produce’ functionality
to be tested directly, simply by unplugging equipment to
represent failure, and attaching new equipment during
production to test how the system responds. As such, custom
hardware device adaptors will be used to communicate
between the simulation and openMOS.

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

102

III. SCENARIO

Although the simulation approach has been developed to
allow for a large number of devices, the initial
implementation is more modest, aiming to begin with twenty
simulated devices and their device adaptor counterparts. The
main goal of this initial setup is to demonstrate flexible
process simulation, in which machines can be added or
removed from the production environment.

The chosen scenario is the assembly of a generic
electronic product consisting of four components: two casing
parts and two electronic internals. Both the product casing
and internals have variants allowing for individual products to
be customised. The simulated facility consists of several
different workstation types (each with several instances)
through which the products flow in a non-linear order, as
shown in Figure 3:

• 4 Laser cutting stations • 2 Assembly Stations

• 3 Painting Stations • 2 3D-Printing Stations

• 3 Gluing Stations • 6 Assembly Stations

• 1 Final Marking Station

Variation in each individual product can require parts to
revisit workstations multiple times, requiring the CMS to
determine the best use of available equipment. For example
although there are 3 distinct assembly tasks, the 6 assembly
stations are each capable of performing every action, and can
adaptively share workload. Finally, product flow through the
simulated facility is achieved using a small number of
Automated Ground Vehicles (AGVs). A single AGV
controller is used to assign jobs to AGVs, which move
products on predefined routes.

Figure 3. Material flow between stations for single product completion

within simulation scenario.

Figure 4. A virtual assembly workstation shown in VREP, along with the

preplanned motion paths.

IV. IMPLEMENTATION

To achieve the requirements of the simulation, several
different software packages were combined across a range of
different hardware. Figure 1 shows a high-level depiction of
the software setup for openMOS, as it would be deployed in
an actual production environment. Figure 2 shows a similar
depiction of the software used in the simulation. Comparing
Figures 1 and 2, the most obvious difference is the inclusion
of the Robotic Operating System (ROS) to act as a secondary
communication protocol. As the simulation is distributed,
consisting of equipment controllers and simulations, ROS was
identified as the most suitable method of communication
within the simulation itself, without interfering with the
openMOS MSB. With its wide adoption and ease of use, ROS
also allows an extensive range of existing software to be
easily deployed, or additional capabilities to be added quickly
using its well-defined software architecture. As previously
discussed, for each simulated device within the demonstrator,
an embedded computer was required to act as the device
adaptor. Owing to their popularity and wide range of software
available, the decision was made to use the Raspberry Pi 3
(RasPi) in this role.

In an actual openMOS installation, communication
between devices is primarily achieved via an Open Platform
Communications Unified Architecture (OPCUA) [7]
server/client model. Each device hosts an OPCUA server
(which is essentially just a database of variables which can be
accessed or updated in real-time), allowing connected clients
to read/write data as appropriate, via the MSB. Due to the
success of OPCUA in communicating between the device
adaptor and the MSB, OPCUA was also seen as an
appropriate method for the device adaptor to communicate
with the simulation (effectively running two OPCUA servers
for each device adaptor). Therefore at minimum, each RasPi
is running two OPCUA servers – one ‘facing’ the MSB and
one ‘facing’ the simulation – and acts an ‘adaptor’, converting
openMOS skill requests into ROS based simulation triggers.

 For the OPCUA server which connects to the MSB, a
standalone Java OPCUA implementation was used, to
maintain consistency with how a typical openMOS install
would function. By contrast, the simulation facing OPCUA
server was implemented using the ROS_OPCUA package,

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

103

which directly maps ROS topics and services into a OPCUA
database. This simplifies integration to the extent that when
the device adaptor identifies an openMOS skill request on the
MSB-facing OPCUA server, it can simply set a variable on
the simulation-facing OPCUA server to trigger the
appropriate ROS service within the simulation.

As shown in Figure 2, for extremely simple simulated
devices, (such as the 3D printing stations which simply output
a product at a fixed rate) the required simulation was simple
enough to run on the same RasPi. This was achieved using an
Embedded Simulink model, which communicated with the
OPCUA server onboard via an additional ROS node on the
same RasPi. For all other stations, a higher fidelity simulation
was used to model the physical interactions of equipment and
product. This allowed the quality of the output (such as paint
coverage and glue distribution) to be assessed, to confirm that
the virtual station models were appropriately complex as to
represent real equipment. For these stations, Matlab was used
as a virtual controller, with the simulation provided using the
VREP simulation environment on a dedicated desktop PC per
station. An additional standard desktop PC was connected to
the openMOS network to run the CMS and MSB software.

Finally, to provide high speed network connections
between all devices, two commercial DLink DGS-1100-24
Gigabit Switches were used to provide network connectivity
typical of a small production environment. Although only 20
devices were used in this initial scenario, 48 RasPi device
adaptors were created for future simulation scenarios.

V. ASSESSMENT OF SUITABILITY

As stated in the introduction, the purpose of this
simulation is not to produce the most accurate reconstruction
of a production environment, but is instead intended to
provide a facsimile of the interactions between openMOS and
a production system, without having to invest in the hardware.
The simplest method of assessing whether this solution is
suitable is to compare a simulated workstation with a practical
example; as the simulation is intended to replicate the data
provided by equipment, the CMS should not be able to
differentiate between simulated and practical equipment.

For this purpose, one of the simulated stations within the
scenario was selected to exactly mimic an actual workstation
already available. The virtual `gluing station' was designed to
replicate the motions and actions of a physical ABB IRB120
industrial robot arm. In addition to the robot itself, a gluing
nozzle and temperature sensor were also included. By
creating a ROS package for the physical system, the software
implementation was nearly identical to the simulated devices,
requiring minimal integration. As the ROS_OPCUA adaptor
automatically exposes ROS topics and services, there was no
additional setup beyond allocating separate ROS namespaces
to each station so as to differentiate between them. (As such,
it can be also be concluded that that integrating physical
equipment into the simulation is extremely easy, provided that
a ROS package is available).

Having installed both virtual and physical versions of the
same workstation, both systems were linked to the MSB and
an empirical analysis of the data carried out. As there was no
substantial difference in the data produced, the simulation was

judged to be an accurate representation of the actual robot,
validating that the simulated approach produced an accurate
portrayal of production hardware.

Following this, repeated testing has been undertaken to
validate the P&P functionality of openMOS, by removing
RasPis from the simulation during operation. It has been
found that the system is capable of responding to this by re-
routing product to additional instances of the same
workstation, where possible. When these machines are then
restored, openMOS is once again able to make use, without
the need to restart the entire facility. As both simulated and
real-world process devices can function together, the
simulation can be assessed to produce an output equivalent to
that provided by actual hardware. Therefore, the simulation
is capable of generating network traffic representative of an
actual physical production facility, but at a greatly reduced
cost.

VI. CONCLUSION

This paper has outlined the creation of a simulated

production system, designed to replicate the data and signals

from real world equipment to verify many aspects of the

openMOS architecture. The developed simulation approach

is highly straightforward, in addition to being easily

expandable to simulate production facilities of greater size.

Following on from the initial testing covered here, the

intention is for future work to include a comparison between

the simulation and a hardware infrastructure with known

timings; intended to allow an objective comparison to

determine if openMOS is truly capable of performing on a

large scale without performance loss. Finally, the simulation

infrastructure developed here also has the potential for

training activities, as well as potentially serving as a basis for

benchmarking and certification

REFERENCES

[1] Openmos website. [online] Available at: https://www.openmos.eu/

[Accessed 05 Apr. 2018].

[2] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, J. Ota, “Agile Assembly
System by “Plug and Produce”,” CIRP Annals, Volume 49, Issue
1,Pages 1-4,

[3] L. Durkop, J. Imtiaz,H. Trsek, L.Wisniewski, J. Jasperneite. “Using
OPC-UA for the Autoconfiguration of Real-time Ethernet

Systems”. In Proc. 11th IEEE International Conference on

Industrial Informatics (INDIN), 2013, pp. 248-253.

[4] V , Hammerstingl., G. Reinhart. “Unified Plug&Produce architecture

for automatic integration of field devices in industrial

environments”. In Proc. IEEE International Conference on

Industrial Technology (ICIT), 2015, pp. 1956-1963.

[5] P. Neves, L. Ribeiro, J. Dias-Ferreira, M. Onori and J. B. Oliveira,

“Layout validation and re-configuration in Plug&Produce systems”,
Journal of Assembly Automation, Volume 36, 0pp. 412-428, 2016

[6] N. Lohse, P. Ferreira, I. Pereira, “Deliverable: D3.1: Open Plug and
Produce Architecture Specification”, [online] Available at:
https://www.openmos.eu/ [Accessed 05 Apr. 2018].

[7] B. Lydon, “Non-Proprietary Controller-to-Controller

Communications” February, 2014, [online] Available at:
https://www.automation.com/portals/manufacturing-

operationsmanagement/opc/non-proprietary-controller-to-

controllercommunications [Accessed 05 Apr. 2018].

https://www.automation.com/portals/manufacturing-operationsmanagement/opc/non-proprietary-controller-to-controllercommunications
https://www.automation.com/portals/manufacturing-operationsmanagement/opc/non-proprietary-controller-to-controllercommunications
https://www.automation.com/portals/manufacturing-operationsmanagement/opc/non-proprietary-controller-to-controllercommunications

	UKRAS19-Proceedings-Final_Part104
	UKRAS19-Proceedings-Final_Part105
	UKRAS19-Proceedings-Final_Part106
	UKRAS19-Proceedings-Final_Part107

