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 

Abstract— This paper describes the development of a

simulated production demonstrator, used in the development of 

the openMOS plug-and-produce architecture. Primarily 

designed to allow synthetic testing of plug-and-produce 

technologies, the intention is to simulate real production 

hardware, such that there is no perceivable difference to the 

production controller. Communication with the main 

production controller is achieved via network, using individual 

embedded computers to act as PLC based ‘device adaptors’. 
Each production device is also either simulated using the same 

embedded computer, or externally on a more powerful 

computer, with simulation specific information (such as 

material flow) transferred using ROS. Testing has proven the 

concept to work well, allowing for a larger demonstration of the 

openMOS project but at a fraction of the cost. 

I. INTRODUCTION

The global manufacturing industry is currently moving to 
the next generation of automation, often termed ‘Industry 
4.0’. One goal of this effort is to increase efficiency, allowing
more products to be created to help satisfy the increasing 
global demand for consumer goods. At the same time, smart-
manufacturing can also be used outside of traditional mass 
production, offering products in smaller numbers but with 
other advantages; such as reduced time-to-market, increased 
product complexity or lower production cost. 

As automation equipment becomes more prevalent, Small 
and Medium-sized Enterprises (SMEs) are now rapidly 
investing in robotics and equipment previously only available 
to the largest and most technology advanced of companies. 
Although much of the technology is the same, SMEs face 
different challenges to large companies, typically due to costs. 
Unlike large companies which can afford bespoke solutions, 
SMEs are often limited to using existing “Off-the-shelf” 
equipment, sourced from whichever supplier is most cost 
effective. Production systems are then created by integrating 
equipment from multiple suppliers, often including ‘legacy’ 
systems with very low levels of automation. 

To simplify this process and make the benefits of smart 
manufacturing more obtainable, efforts are being made to 
develop unifying “smart-automation” architecture, capable of 
integrating varied equipment into a cohesive system. This 
form of architecture must combine both software and 
hardware elements, to communicate and control the diverse 
range of equipment used in manufacturing. The work 
described in this paper has been undertaken during the 
development of such a system, as part of the openMOS 
(Open-source Manufacturing Operating System) project [1].  
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Figure 1.  High-level openMOS Architecture for native and legacy 

equipment 

A. openMOS Architecture

The openMOS project is an openly-accessible software-
architecture, intended to provide a standardised platform for 
automation in manufacturing. One of the key goals of the 
project is to provide ‘plug-and-produce’ (P&P) [2]
functionality, allowing any compatible equipment to be 
integrated into a system with minimal manual setup. 
Although other P&P systems have been proposed, they 
typically focus on low level integration, such as local-
discovery, where each device announces itself upon 
connection [3] [4].  

Although such functionality is required, these systems do 
not currently attempt to solve the more difficult task of 
conveying to the rest of the system what the new device can 
accomplish. For openMOS, this is achieved by abstracting the 
product from the equipment as much as possible. For a device 
to be compatible, its capabilities must be encapsulated as 
‘skills’. (These could be entirely unique or highly generic
skills such as ‘hole drilling’.) To provide P&P functionality,
each device declares its skills and parameters to the overall 
system upon initial connection. Each product is then defined 
using a ‘recipe’, which is an ordered list of skills which must
be applied to the input material for the final product to be 
created. As transportation between equipment is also 
considered, the most efficient flow of material through the 
manufacturing facility is automatically determined. These 
features are intended to facilitate ‘Flexible automation’, [5] in
which either existing equipment can be rapidly reconfigured 
to meet changing demand, or new equipment added to 
increase capability. 
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Figure 2.  High-level openMOS Architecture for simulated equipment 

During production, the core functionality requires all 
devices to be connected to a common Manufacturing Service 
Bus (MSB) [6] running on a local network, as shown in 
Figure 1. The MSB is used to transmit “skill” requests and
sensor data, providing every device access to any data it 
requires. Overall control of the production task is achieved 
via an agent-based Cloud Management System (CMS). For a 
device to be openMOS compatible, it must fulfil both 
hardware and software requirements. Although new 
production devices featuring openMOS are natively 
compatible, existing devices are usually not equipped to 
support P&P interfaces and may lack network connectivity, 
making interfacing difficult. Therefore, legacy support is 
introduced through ‘device adaptors’ which interface between
the device and the MSB. Each DA is essentially a small 
embedded computer, which converts openMOS skill 
commands into an equipment specific interface.  

B. Simulation

For any automated manufacturing environment, the cost
of equipment represents an enormous initial investment. As 
the openMOS architecture has been co-developed by several 
SME’s and academic institutions, the scale of testing has been
limited. Therefore, although several physical production 
demonstrators have been created, each has been a compact 
representation of a specific capability of the overall 
architecture. Instead, it was decided that a simulated approach 
could be used to demonstrate openMOS capabilities at a 
larger scale. Furthermore, the development of a simulation 
approach would be useful for any SME wishing to adopt the 
openMOS platform, allowing them to verify the functionality 
of the system without applying it to their production 
environment. This paper presents the development of a 
scalable approach to virtual system development, intended to 
provide multiple levels of fidelity.  

II. SIMULATOR REQUIREMENTS

A. Computational Hardware

Although the term ‘simulator’ is used here to describe the
entire system, it should be recognised that there are two 
distinct parts; the first being the openMOS architecture itself. 
For the results to be meaningful, openMOS must be deployed 
using hardware comparable to what would be used in a 
production environment. This applies to both the computers 
which run the software, as well as the networking equipment 
and interfaces for each machine. 

The second part is the simulated plant operations used to 
produce representative data. At the most basic, this consists of 
responding to openMOS skill requests and replicating the 
sensor data that would be created by actual equipment. As a 
single production facility could include many hundreds of 
connected devices, the computational requirements could be 
quite large, especially for high fidelity simulation.  Therefore, 
as the primary purpose of the simulation is to test the 
performance of the openMOS control system, it is essential 
that the simulator must be implemented in a way does not 
affect the performance of the MSB.  This is most easily 
achieved through hardware separation, in which openMOS 
and the simulator are run on independent equipment. 
Moreover, as using a single computer limits the scale of the 
manufacturing process which can be modelled, a distributed 
computing approach is to be used; with multiple computers 
working in conjunction to produce a facility scale simulation. 

B. Distributed Computing, Networking and Device Adaptors

To ensure that the demonstrator is representative, the
interface between openMOS and the simulation must 
replicate what would be found on an actual deployment. One 
critical element is that the openMOS communication 
protocols rely on each device having a unique IP address, to 
ensure that each device can be separately addressed by the 
controller. Returning to Figure 1, there are two methods for 
openMOS to interact with hardware: 

 Natively supporting openMOS within the hardware
controller itself

 Using a dedicated openMOS device adaptor to support
legacy equipment.

Native support of openMOS is the eventual goal of the 
project, with manufacturers producing devices already 
compatible with openMOS installations. However, as the 
devices within this work are simulated, such an approach 
would require including openMOS interface protocols 
directly within the simulation. The downside of this approach 
is that any latency in the simulation could introduce delays to 
the MSB which are actually specific to the simulator, rather 
than openMOS itself. Furthermore, although it is possible that 
both network interface and controller could be virtualized, to 
ensure compatibility it is far simpler to use separate physical 
devices. This also allows the ‘Plug and Produce’ functionality 
to be tested directly, simply by unplugging equipment to 
represent failure, and attaching new equipment during 
production to test how the system responds. As such, custom 
hardware device adaptors will be used to communicate 
between the simulation and openMOS. 
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III. SCENARIO

Although the simulation approach has been developed to 
allow for a large number of devices, the initial 
implementation is more modest, aiming to begin with twenty 
simulated devices and their device adaptor counterparts. The 
main goal of this initial setup is to demonstrate flexible 
process simulation, in which machines can be added or 
removed from the production environment. 

The chosen scenario is the assembly of a generic 
electronic product consisting of four components: two casing 
parts and two electronic internals. Both the product casing 
and internals have variants allowing for individual products to 
be customised. The simulated facility consists of several 
different workstation types (each with several instances) 
through which the products flow in a non-linear order, as 
shown in Figure 3: 

• 4 Laser cutting stations • 2 Assembly Stations

• 3 Painting Stations • 2 3D-Printing Stations

• 3 Gluing Stations • 6 Assembly Stations

• 1 Final Marking Station

Variation in each individual product can require parts to
revisit workstations multiple times, requiring the CMS to 
determine the best use of available equipment.  For example 
although there are 3 distinct assembly tasks, the 6 assembly 
stations are each capable of performing every action, and can 
adaptively share workload. Finally, product flow through the 
simulated facility is achieved using a small number of 
Automated Ground Vehicles (AGVs). A single AGV 
controller is used to assign jobs to AGVs, which move 
products on predefined routes. 

Figure 3.  Material flow between stations for single product completion 

within simulation scenario. 

Figure 4.  A virtual assembly workstation shown in VREP, along with the 

preplanned motion paths. 

IV. IMPLEMENTATION

To achieve the requirements of the simulation, several 
different software packages were combined across a range of 
different hardware. Figure 1 shows a high-level depiction of 
the software setup for openMOS, as it would be deployed in 
an actual production environment. Figure 2 shows a similar 
depiction of the software used in the simulation. Comparing 
Figures 1 and 2, the most obvious difference is the inclusion 
of the Robotic Operating System (ROS) to act as a secondary 
communication protocol. As the simulation is distributed, 
consisting of equipment controllers and simulations, ROS was 
identified as the most suitable method of communication 
within the simulation itself, without interfering with the 
openMOS MSB. With its wide adoption and ease of use, ROS 
also allows an extensive range of existing software to be 
easily deployed, or additional capabilities to be added quickly 
using its well-defined software architecture. As previously 
discussed, for each simulated device within the demonstrator, 
an embedded computer was required to act as the device 
adaptor. Owing to their popularity and wide range of software 
available, the decision was made to use the Raspberry Pi 3 
(RasPi) in this role.  

In an actual openMOS installation, communication 
between devices is primarily achieved via an Open Platform 
Communications Unified Architecture (OPCUA) [7] 
server/client model. Each device hosts an OPCUA server 
(which is essentially just a database of variables which can be 
accessed or updated in real-time), allowing connected clients 
to read/write data as appropriate, via the MSB. Due to the 
success of OPCUA in communicating between the device 
adaptor and the MSB, OPCUA was also seen as an 
appropriate method for the device adaptor to communicate 
with the simulation (effectively running two OPCUA servers 
for each device adaptor). Therefore at minimum, each RasPi 
is running two OPCUA servers – one ‘facing’ the MSB and 
one ‘facing’ the simulation – and acts an ‘adaptor’, converting 
openMOS skill requests into ROS based simulation triggers. 

 For the OPCUA server which connects to the MSB, a 
standalone Java OPCUA implementation was used, to 
maintain consistency with how a typical openMOS install 
would function. By contrast, the simulation facing OPCUA 
server was implemented using the ROS_OPCUA package, 
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which directly maps ROS topics and services into a OPCUA 
database. This simplifies integration to the extent that when 
the device adaptor identifies an openMOS skill request on the 
MSB-facing OPCUA server, it can simply set a variable on 
the simulation-facing OPCUA server to trigger the 
appropriate ROS service within the simulation. 

As shown in Figure 2, for extremely simple simulated 
devices, (such as the 3D printing stations which simply output 
a product at a fixed rate) the required simulation was simple 
enough to run on the same RasPi. This was achieved using an 
Embedded Simulink model, which communicated with the 
OPCUA server onboard via an additional ROS node on the 
same RasPi. For all other stations, a higher fidelity simulation 
was used to model the physical interactions of equipment and 
product. This allowed the quality of the output (such as paint 
coverage and glue distribution) to be assessed, to confirm that 
the virtual station models were appropriately complex as to 
represent real equipment. For these stations, Matlab was used 
as a virtual controller, with the simulation provided using the 
VREP simulation environment on a dedicated desktop PC per 
station. An additional standard desktop PC was connected to 
the openMOS network to run the CMS and MSB software. 

Finally, to provide high speed network connections 
between all devices, two commercial DLink DGS-1100-24 
Gigabit Switches were used to provide network connectivity 
typical of a small production environment. Although only 20 
devices were used in this initial scenario, 48 RasPi device 
adaptors were created for future simulation scenarios. 

V. ASSESSMENT OF SUITABILITY

As stated in the introduction, the purpose of this 
simulation is not to produce the most accurate reconstruction 
of a production environment, but is instead intended to 
provide a facsimile of the interactions between openMOS and 
a production system, without having to invest in the hardware. 
The simplest method of assessing whether this solution is 
suitable is to compare a simulated workstation with a practical 
example; as the simulation is intended to replicate the data 
provided by equipment, the CMS should not be able to 
differentiate between simulated and practical equipment.  

For this purpose, one of the simulated stations within the 
scenario was selected to exactly mimic an actual workstation 
already available. The virtual `gluing station' was designed to 
replicate the motions and actions of a physical ABB IRB120 
industrial robot arm. In addition to the robot itself, a gluing 
nozzle and temperature sensor were also included. By 
creating a ROS package for the physical system, the software 
implementation was nearly identical to the simulated devices, 
requiring minimal integration. As the ROS_OPCUA adaptor 
automatically exposes ROS topics and services, there was no 
additional setup beyond allocating separate ROS namespaces 
to each station so as to differentiate between them. (As such, 
it can be also be concluded that that integrating physical 
equipment into the simulation is extremely easy, provided that 
a ROS package is available). 

Having installed both virtual and physical versions of the 
same workstation, both systems were linked to the MSB and 
an empirical analysis of the data carried out. As there was no 
substantial difference in the data produced, the simulation was 

judged to be an accurate representation of the actual robot, 
validating that the simulated approach produced an accurate 
portrayal of production hardware. 

Following this, repeated testing has been undertaken to 
validate the P&P functionality of openMOS, by removing 
RasPis from the simulation during operation. It has been 
found that the system is capable of responding to this by re-
routing product to additional instances of the same 
workstation, where possible. When these machines are then 
restored, openMOS is once again able to make use, without 
the need to restart the entire facility. As both simulated and 
real-world process devices can function together, the 
simulation can be assessed to produce an output equivalent to 
that provided by actual hardware. Therefore, the simulation 
is capable of generating network traffic representative of an 
actual physical production facility, but at a greatly reduced 
cost. 

VI. CONCLUSION

This paper has outlined the creation of a simulated 

production system, designed to replicate the data and signals 

from real world equipment to verify many aspects of the 

openMOS architecture. The developed simulation approach 

is highly straightforward, in addition to being easily 

expandable to simulate production facilities of greater size. 

Following on from the initial testing covered here, the 

intention is for future work to include a comparison between 

the simulation and a hardware infrastructure with known 

timings; intended to allow an objective comparison to 

determine if openMOS is truly capable of performing on a 

large scale without performance loss. Finally, the simulation 

infrastructure developed here also has the potential for 

training activities, as well as potentially serving as a basis for 

benchmarking and certification 
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