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Abstract— This preliminary study explores a new approach to

EEG data classification by using the concept of evolutionary 

algorithms to perform attribute selection, as well as optimise a 

neural network for data classification in mental communication 

for robotics. EEG brainwave data is recorded from a preliminary 

set of subjects via the TP9, AF7, AF8, and TP10 electrodes used 

by the EEG headband, and 2550 statistical temporal features are 

extracted as dimensions of data. Nature inspired evolutionary 

algorithms select attributes before an evolutionary algorithm 

optimizes a neural network topology. A Long Short-Term Neural 

Network is also trained to perform deep learning on the data. 

Promising results show that the evolutionary optimised neural 

net scores 96.11% accuracy and the LSTM achieves 96.86%. The 

evolutionary neural network, although lacking in 0.75 accuracy 

points, has a training time far more optimal than the LSTM, at 

less than 25% of the required resource usage.  

I. INTRODUCTION

While deep learning is often applied to solve extremely 

complex problems, the procedure is often criticized for being 

expensive in computational resources and processing time 

requirements; due to the growing need for machine learning in 

both industrial and scientific applications of robotics, 

optimization is at the forefront of importance for their 

viability. Natural optimization, such as that observed in 

Darwinian evolution, are now becoming a viable option for 

solving real-world problems.  

In Human-Robot Interaction (HRI), an increase in resource 

availability allows for the development of more degrees of 

interaction with a human, as well as the accuracy of 

classifying those discrete interactions, for example, in using 

complex techniques to classify a user’s thought patterns as a 
point of input in social interaction with machines. 

Specifically, to classify a subject’s emotional state requires a 
large amount of data to be processed in order to train a model 

which can then match minute patterns and rules to those states. 

Since the EEG signals are complex, non-linear, and non-

stationary, temporal time-window and statistical extraction 

techniques must be employed in order to mathematically 

describe a wave pattern.  

This paper presents a preliminary study in which an 

evolutionary simulation from a previous study derives, 

through a survival of the fittest, a fully connected neural 

network topology which can classify a dataset of an EEG 

brainwaves to emotional state. The accuracy closely matches 

that of modern deep learning techniques but is trained in under 

a quarter of the computational resources required.  

II. BACKGROUND

Electroencephalography, or EEG, is the measurement and 

recording of electrical activity produced by the brain [1]. 

Electrodes are placed on certain points around the cranium, 

which read minute electrophysiological currents produced by 

the brain due to nervous oscillation [2]. Raw electrical data is 

measured in Microvolts (uV), which over time produce wave 

patterns when gathered sequentially. 

The MUSE is a commercially available EEG headband 

featuring four electrodes for recording brainwave activity, as 

seen in Fig 1. Placement positions correlate to the international 

standard EEG placement system [3].   

Neuroscientific studies show that chemical composition 

influences nervous oscillation, which in turn generate 
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electrical brainwave activity [13]. Emotions are a direct result 

of varying chemical compositions within the brain, and thus a 

side-effect of feeling emotion is to generate electrical brain 

activity, which can then be reverse engineered and classified 

and their source emotion(s). 

In terms of emotional classification through different levels of 

user enjoyment, researchers successfully measured two 

distinct states of varying enjoyment of a task via binary 

classification techniques [4]. Muse headbands are also often 

used in neuroscience research projects due to their low cost, 

accessibility, and effectiveness in terms of classification and 

accuracy. In a related experiment, binary classification of two 

physical tasks achieved 95% accuracy using Bayesian 

probability methods [5].  

A previous study used ensemble classification techniques to 

classify a user’s emotional state, providing the dataset for this

experiment [6], the best model was a Random Forest classifier 

with a classification accuracy of 97.89%. A related study also 

used classical machine learning techniques to classify whether 

someone was concentrative or relaxed [7] with success 

following the same method of statistical extraction.  

Long-Short-Term-Memory (LSTM) is a technique in which 

multiple recurrent neural networks (RNN) predict an output 

based on their input and their current state. An illustration of 

the individual LSTM units can be observed in Figure 2, the 

operations that each unit will compute are given as follows. 

Firstly, a logical forget will decide which information to 

discard and delete: Wf represents the learning-weighting 

matrix, h represents the output vector of the unit at provided 

timestep t-1, xt being the current input vector, and finally bf is 

a bias vector applied to the process.  =  𝜎(𝑊  . [ℎ − , ] +  ) (1) 

The cell then stores certain information, i represents input 

data, with Ct being the vector of the new values generated by 

the process. 𝑖  =  σ 𝑊𝑖  . [ℎ − , ] +  𝑖 (2) 

�̃�  =  tanh 𝑊 . [ℎ − , ]  +  . (3) 

The cell is then updated using (1-3) in a convolutional 

operation: C  =  f  ∗  C −  +  i  ∗  �̃� (4) 

An output is consequently generated where Ot  represents the 

cell’s output gate. The internal (hidden) state of the cell is 
subsequently updated: o  =  σ W [ℎ − , ]  +  . (5) ℎ =  ∗  tanh 𝐶 . (6) 

Fully Connected Artificial Neural Networks (ANN) also 

approximate and classify, though do not compute temporal 

states as with LSTM. An example of ANN architecture can be 

seen in Figure 3, where three inputs are computed to one of 

three output classes, via two hidden layers of 3 and 2 neurons 

respectively. 

Learning is performed through backpropagation [8]. This is a 

case of automatic differentiation in which errors in 

classification or regression (when comparing outputs of a 

network to ground truths) are passed backwards from the final 

layer, to derive a gradient which is then used to calculate 

neuron weights within the network, dictating their activation. 

It must be noted that the network topology itself is static, and 

thus, is not optimized. Weighting refinement is carried out via 

the following process: 

1. Generate a network; input nodes are equal to the

number of data attributes, outputs are equal to the

number of classes (or 1 for regression problems).

Hidden layers, if any, are defined by human input.

2. Initialise the node weights randomly by a specified

distribution algorithm (e.g. XAVIER).

3. Compute the gradients.

4. Backpropagate the errors through the network to

update neuron weights.

Errors are calculated via various methods, e.g. distance from 

the ground truth where real numbers are concerned. For 

classification, entropy is calculated: 𝐸 =  −∑ 𝑃𝑖  x 𝑙 𝑃𝑖  .𝑖= (7) 

Fig 3. A Fully Connected Neural Network for classification 

of Three Inputs to Three Classes, with Two Hidden Layers 

of 3 and 2 Neurons 

Fig 2. An illustrated LSTM unit [14] 
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Comparison is thus the difference between two entropies, 

giving information gain or information loss when one model 

is compared to another. This is the value of the Kullback-

Leibler (KL) divergence when a univariate probability 

distribution of a given attribute is compared to another [10]. 

Information gain is thus given as: 𝑖 , = − | . (8) 

Evolutionary algorithms search a problem space via a method 

inspired by natural evolution [11]. A population of solutions 

have a fitness metric and compete against one another for 

survival. This causes a race condition to occur when an 

environment can support fewer solutions than exist, the 

survival of the fittest, causing weaker solutions to be killed off 

and allowing the stronger to survive. This, over time, causes 

the population to increase in strength [12]. 

The evolutionary search in its simplest form follows this 

general process: 

1. Population at generation 0 are initialized via a chosen

distribution, e.g. Random.

2. The simulation begins until a defined termination:

a. Select parent(s) for use in generating

offspring.

b. Evaluate the generated offspring's fitness.

c. Kill off the weakest members based on the

number of solutions that the environment

can support.

3. Produce the strongest solution found after the

simulation is terminated.

Previous work found success in evolutionary optimisation 

algorithms being applied to the selection of network topology 

in a single-objective approach to achieve the highest 

classification accuracy, and thus best applied to datasets in 

which class distribution is close to equal [9]. The problem 

space of deep neural networks grows exponentially with each 

added layer, and thus, an exhaustive search is an unrealistic 

option in terms of even the most state-of-the-art computer 

hardware. For this reason, heuristic search techniques are 

employed to efficiently explore the problem space.   

III. METHOD

Data is acquired from a previous experiment [6]. Data is 
gathered from two subjects, male and female aged 20-22. The 
EEG data was recorded from a MUSE EEG headband where 
each subject viewed six films clips all with an obvious 
emotional valence. The emotional experiences caused by the 
clips formed a database of raw electrical readings which then 
had temporal statistics extracted. Statistical features extraction 
derived by [7] was adopted in this work.  

As stated in [7], a time window of length 1s was introduced, 
overlapping every 0.5 seconds (e.g. w1 0-1, w2 0.5-1.5). Time 
windows are described by their extracted mathematical 
statistical features. Of the 2550 features generated for each 
object of data, an evolutionary search of 10 solution population 
members was performed for 10 generations to calculate the 
best set of features, since the dimensionality of the data was far 
too complex. 

Two alternative models are explored and then trained with the 
generated dataset.  Firstly, an LSTM topology is manually 
explored and tuned, as the models are far too computationally 
expensive to search with a metaheuristic approach. Secondly, 
the evolutionary algorithm will search the problem space of 
MLP neural networks, with a limitation of three maximum 
hidden layers a 100-neuron upper bound for each. A population 
of 10 are simulated for 10 generations, with roulette selection 
being used for breeding partners. The simulation is run three 
times with identical parameters for scientific validity. Both 
models are trained on 10-fold cross validation of the dataset, 
and finally compared in terms of classification accuracy and 
resources required to train. Both types of network are given 50 
epochs to train, with a batch size of 50 for prediction. All 
random numbers were generated by the Java Virtual Machine 
(JVM) with a seed of 0.  

Both models were trained on a Graphical Processing Unit 
(GPU) due to its high efficiency when compared to a Central 
Processing Unit (CPU). The GPU used was an Nvidia 
GTX1060 with 6GB of Graphical Memory and 1280 CUDA 
cores for computation. Displaying the OS (Windows 10) was 
the only other graphical process executing during the 
experiment. 

IV. RESULTS

Evolutionary attribute selection performed on the dataset for 
10 generations with a population of 10 found 500 attributes 
suitable for use in classification, and thus data dimensionality 
was reduced from 2550 to 500 for the dataset to be used in the 
experiments.  

Manual tuning of the LSTM found that a single hidden layer of 
units consistently outperformed deeper networks. 25 units on 
the layer were found to be the most optimal, with a 
classification accuracy of 96.86%, as seen in Table I.  

Three genetic simulations were executed as observed in Table 
II, the most optimal network was found to be a single hidden 
layer of 15 neurons, producing a classification accuracy of 
96.11%.  

Finally, the two best networks are compared in Table III, 
where, although slightly more accurate (+0.75), the LSTM 
took far longer to train (+48.45s). 

V. CONCLUSION

To conclude, this experiment suggested two models for 

classifying a subject’s mental emotional state based on the 
mathematical descriptions of recorded brainwave activity: 

 An LSTM that achieved 96.86% and required 65.11s

of resources to train

 An MLP with genetically optimised topology which

achieved 96.11% and required 16.66s to train.
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TABLE I. MANUAL TUNING RESULTS FOR LSTM TOPOLOGY FOR 

EMOTIONAL STATE CLASSIFICATION 

LSTM  

Units 

Classification 

Accuracy (%) 

25 96.86 

50 96.66 

75 96.48 

100 95.73 

125 95.87 

TABLE II. THE BEST SOLUTIONS OF MLP TOPOLOGY AT THE FINAL 

GENERATION OF THREE INDIVIDUAL EVOLUTIONARY SIMULATIONS 

MLP Topology 
Classification 

Accuracy (%) 

1 hidden layer, 6 neurons 95.68 

1 hidden layer, 15 

neurons 
96.11 

2 hidden layers, (9, 5) 

neurons 
94.37 

TABLE III. COMPARISON OF TWO FINAL SOLUTIONS 

Classifier 
Classification 

Accuracy (%) 

Training Time 

(s) 

LSTM (Manual) 96.86 65.11 

MLP (Genetic) 96.11 16.66 

Although the LSTM is slightly more accurate at prediction, 

the optmised MLP managed to classify with close accuracy in 

around one quarter of the required resources to train. Future 

work should concern applying the two experiments to larger 

datasets as well as problems of different dimensions, 

comparing the difference in classification ability and resource 

usage, and finally analysing the patterns observed between 

problem spaces. With enough computational resources 

available, the genetic search should be applied to the LSTM 

topology for a true comparison. Additionally, a multi-

objective approach should be explored, not only concerning 

accuracy, but also efficiency in terms of resource usage. With 

an accurate model to classify Mental Emotional States, the 

next step is to endow a robot to socially interact to humans 

(i.e. by selecting proper (inter)actions) based on their feelings 

in order to provide some assistance (e.g. health care contexts: 

monitoring elderly mental health; assisting clinical sessions 

with children, etc.). 
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Fig 4. Three evolutionary simulations run on the dataset 
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