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 

Abstract— Locust plagues are very harmful for food security,

quality and quantity of agricultural products. With this 

consideration, precise locust detection is significant for 

preventing locust plagues. To achieve this task, aggregate 

channel feature (ACF) object detector with parameters 

optimization is applied to detect locusts. Experiment results show 

that ACF object detector with optimized parameters can achieve 

0.39 for average precision and 0.86 for log-average miss rate. 

Moreover, ACF is a non-deep method using a simple model to 

detect objects. That is, the proposed method is promising to be 

embedded in a real-time locust detection system. 

I. INTRODUCTION

Pests have brought significant negative effects on food 
security, agricultural economy and quality of agricultural 
products [1]. Nowadays, pests are usually detected by human 
beings. Manual monitoring is a labor-intensive job and 
expensive for large farms. To tackle this problem, computer 
vision techniques have provided a promising solution for 
detecting pests. 

In [2], edge features (histograms of oriented gradients) are 
combined with support vector machine which can efficiently 
identify aphids. Moreover, support vector machines 
incorporating with selecting suitable region and color index 
can achieve less than 2.5% in identifying thrips [3]. Different 
from conventional image processing techniques, deep learning 
methods become very popular for pest identification. In [4], a 
convolutional neural network is trained to detect moths which 
shows a very promising result. In [5], pest identification is 
achieved by using deep residual network and its accuracy is 
98.67% for classifying 10 classes. The deep residual learning 
is also used to classifying pests from complex background [6]. 

However, most research of pest identification is treated as 
an image classification problem, which gives a class label for 
an image and cannot point out the locations and the number of 
pests in an image. Ideally, pest identification should be treated 
as an object detection problem. Both locations and the number 
of pests can be provided. In addition, different regions have 
planted different cash crops. This causes that main pest species 
are different in different regions. For example, cotton is the 
main cash crop in Xinjiang, China. Thus, the main pests in 
Xinjiang are aphids [7]. Wheat is the main cash crops in Inner 
Mongolia, China [8]. Thus, the main pests in Inner Mongolia. 
In this study, we focus on detecting locusts so as helping local 
farmers to prevent locust plagues. However, the proposed 
method could be borrowed to detect other pests (such as aphids, 
moths).  Locust detection system should be embedded system 
and expected to run in real time. Therefore, deep neural 
network related methods are not very suitable for this 
application due to their model too complicated. It does not only 
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spend a plenty of time for training model but also very slow in 
predicting new samples.  

To this end, the aggregate channel features (ACF) object 
detection method is used to identify locusts which is a non-
deep object detector and both of training and prediction are 
very fast as shown in [9]. Firstly, three types of feature 
representations are extracted including color features, gradient 
magnitude features, and edge features. Secondly, a fast feature 
pyramids are used to generate regions of interest. Thirdly, 
AdaBoost classifier [10] is utilized to identify each generated 
region whether there is a locust inside. Overall, the first step is 
to extract efficient features. The combination of second step 
and third step can locate the position of locust in an image. 

The rest of the paper is organized as follows: Section II 
discusses experiment setup and image data acquisition. Then, 
Section III elaborates the whole framework of ACF locust 
detector. Next, Section IV provides the experimental results 
and evaluates the performance. Finally, Section V concludes 
the paper along with future work.   

II. MATERIALS

The two key materials related to this research are 

experiment setup for the locust plague risk estimate and image 

acquisition. In the experiment setup, the settings of each 

experimental zone are explained in detail such as light 

condition, background, and the number of locusts. In image 

acquisition, it does not only provide the type and parameters 

of the used digit but also mention the height and direction of 

photographing images. 

A. Experiment setup

In the experiment, the data of four different risk levels of

locust plague are collected in the outdoor environment, which 

are non-risk, low-risk, middle-risk and high-risk. In addition, 

the data is collected in different weathers (sunny day and 

cloudy day) to guarantee the diversity and generalization. Due 

to limited cover range of camera, the test field is divided into 

9 zones. For Zone No. 1, there are 24 locusts inside which is 

identified as the high-risk of locust plagues. For Zone No. 2, 

3, 6, 8 and 9, there is no locusts inside which are recognized 

as the non-risk of locust plagues. For Zone No. 4, there are 6 

locusts put inside which is termed as low-risk of locust 

plagues. For Zone No. 5 and 7, there are 18 locusts inside 

which are named as the medium-risk of locust plagues. To stay 

natural scenes, there are grass, dead leaves and locusts in the 

test field and all the locusts are in living status which can move 
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randomly. Figure 1 provides the instances of non-risk level, 

low-risk level, middle-risk level, and high-risk level. 

B. Image acquisition

Images are obtained from an outdoor test field in the

Loughborough University, Leicestershire, UK.  The image 

dataset is collected by the Leica dual camera (2MP, CMOS) 

mounted at the right above each cell of the test field. Thanks 

to the outdoor environment, the images are all collected under 

natural light condition. This is due to the color features are 

varied in different weather conditions. Images from different 

weather conditions should be used to train a model. Images 

were captured at 60 cm distances right above the test field. 

III. ACF DETECTION FRAMEWORK

The framework of ACF detector contains three key 
components including feature extraction, feature pyramids, and 
classifier. Given an image, several feature channels are 
extracted and then the pixels of each block are added up with 
pre-smoothing and post-smoothing. Next, an AdaBoost 
classifier is trained to distinguish object from the background.  

A. Feature Extraction

Before extracting feature channels, an image is pre-
smoothing by a [ͳ ʹ ͳ]/4 filter. This operation can suppress

noise and improve the capability of capturing features. In this 
work, several channels are computed and extracted. These 
channels are normalized gradient magnitude, histogram of 
oriented gradients (six channels), and LUV color channels 
(three channels). After obtaining 10 channels, these channels 
are divided into 4 × 4 blocks and then pixels in each block are
summed. Finally, these channels are post-smoothing with a [ͳ ʹ ͳ]/4   filter. The post-smoothing can help aggregate
integral scale.  

B. Fast Feature Pyramids

Feature pyramids are used to propose region of interests
(ROI). They are multi-scale representations of an image, where 
channels are computed at every scale. Therefore, computing 
feature pyramids is a high time-consuming task. To reduce the 
cost of computation, a fast feature pyramids method is applied 
to generate ROI, which runs 8 scales at each octave as in [9]. 

C. Classifier

AdaBoost classifier is used to recognize objects. AdaBoost
is an ensemble learning algorithm which combines a number 
of weak classifiers to construct a powerful classifier. With 
considering the time-efficiency, depth-two trees are used as 
weak learners in this work. The pseudocode of AdaBoost 
classifier is presented in Algorithm 1. 

Non-Risk Zone Low-Risk Zone 

Middle-Risk Zone High-Risk Zone 

Figure 1.  Instances of different locust plague risk level 
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Algorithm 1: AdaBoost classifier 

Initial weights as the same for all depth-two trees 

For each depth-two tree do 

Train the current depth-two tree with the given weight. 

Test the current depth-two tree on the all training data. 

Reset the current tree weight based on weighted error. 

Reset weights based on ensemble predictions. 

End for 

IV. RESULTS AND DISCUSSION

In the section, main results of this work are presented. 
Before discussing the performance, locust detection dataset 
and evaluation metrics are introduced. 

A. Locust Detection Dataset

There are 857 images collected by an RGB camera with the
resolution of 64Ͳ × 48Ͳ. Each image is manually labeled. For
enhancing generalization and robustness, images are shuffle 
before splitting into training dataset and testing dataset. In the 
experiment, there are 60% randomly selected as training 
dataset and the remaining 40% are selected as testing dataset. 

B. Evaluation Metrics

To evaluate the performance of ACF object detector,
several metrics are introduced. They can be mainly divided into 
correct detection-based metrics and miss detection-based 
metrics. Correct detection-based metrics includes precision, 
recall, and average precision. Precision (P) is the number of 
true positives (𝑇𝑃) over the number of positives. The number
of positives is the sum of true positives and false positives (FP). 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (1) 

Recall (𝑅) is the number of true positives over the number
of true positives plus the number of false negatives (𝐹ܰ).𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹ܰ (2) 

Average precision (AP) summarizes the weighted increase 
in precision with each change in recall for the thresholds in the 
precision-recall curve, which is given by  𝐴𝑃 = ∑ ሺ𝑅𝑖 − 𝑅𝑖−ଵሻ𝑃𝑖𝑛𝑖=ଵ  (3) 

where 𝑃𝑖  and 𝑅𝑖  are the precision and recall at the 𝑖 -th
threshold and 𝑛 is the total number of thresholds. Therefore,𝐴𝑃 is a single number for indicating the object performance
with varying thresholds.  

Miss detection-based metrics includes miss rate (ܯ𝑅), false
positives per image (𝐹𝑃𝑃𝐼), and log-average miss rate. Miss
rate is the number of false negatives over the number of true 
positives plus false negatives.  ܯ𝑅 = 𝐹ܰ𝑇𝑃 + 𝐹ܰ (4) 

Log-average miss rate is computed by averaging miss rate 
at nine 𝐹𝑃𝑃𝐼  rates evenly spaced in log-space in the range

ͳͲ−ଶ  to ͳͲ଴  [11]. Log-average miss rate provides a single
value for summaries the miss detection which is convenient for 
presenting performance straightforwardly. 

C. Performance Evaluation

The number of stages and negative samples factor are two
key parameters needed to be tuned in ACF object detector. A 
heuristic method is utilized to find the optimal parameters 
showing in Table I-IV. Because locust detection can be trained 
offline and then running trained model in real time, the values 
AP, log-average miss rate and prediction speed is more 
important compared to training time. The number of trees in 
AdaBoost classifier is another parameter to be pre-defined. 
Because the parameter has been tuned in [9], we follow its 
setting of the parameter which is 2048. When the overlapping 
between ground truths and prediction region more than 50%, it 
is recognized as a true positive. From these Tables, we can see 
the optimal value of negative samples factor is around 4 and 
the optimal value of the number of stages is around 6. We also 
find that increasing negative samples factor after 4 may obtain 
more side-effects than benefits. More precisely, ACF object 
detector with these parameters achieves the best performance 
regarding to average precision and log-average miss rate.  

TABLE I. OPTIMAL ACF PARAMETERS BASED ON AP 

Number of 

Stages 

Negative Samples Factor 

2 4 6 

2 0.08 0.08 0.11 

4 0.32 0.35 0.31 

6 0.30 0.39 0.34 

TABLE II. OPTIMAL ACF PARAMETERS BASED ON LOG-AVERAGE 

MISS RATE 

Number of 

Stages 

Negative Samples Factor 

2 4 6 

2 0.99 0.99 0.98 

4 0.91 0.89 0.89 

6 0.91 0.86 0.88 

TABLE III. OPTIMAL ACF PARAMETERS BASED ON PREDICTION SPEED 

(FRAMES PER SECOND) 

Number of 

Stages 

Negative Samples Factor 

2 4 6 

2 2.13 2.35 2.23 

4 2.11 2.37 2.08 

6 2.23 1.96 0.79 

TABLE IV. OPTIMAL ACF PARAMETERS BASED ON TRAINING TIME 

(SECONDS) 

Number of 

Stages 

Negative Samples Factor 

2 4 6 

2 437 670 720 

4 1147 1092 1321 

6 1834 1708 1729 

After obtaining appropriate parameters of ACF object 

detector, we use average precision, log-average miss rate to 



2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019 

115 

evaluate the performance. With using the selected values of 

parameters, we can achieve 0.39 of average precision, 0.86 of 

log-average miss rate. The corresponding Precision-Recall 

curve and log-average miss rate curve are presented in Figure 

2 and 3. Prediction speed and training time based on these 

parameters setting are 1.96 frames per second and 1708 

seconds respectively. Moreover, Figure 4 presents an example 

of locust detection by ACF object detector. 

Figure 2.  Precision-Recall curve of ACF object detector 

Figure 3.  MR-FPPI curve of ACF object detector 

V. CONCLUSION AND FUTURE WORK

This paper focuses on locust detection problem for 

preventing locust plagues. This is achieved by using an ACF 

object detector. Different from previous work on locust 

identification which only gives a prediction result for a whole 

image, the ACF object detector can both locate the position 

and recognize the locusts in an image. The experimental 

results indicate that ACF object detector with optimized 

parameters can achieve 0.39 of average precision and 0.86 of 

log-average miss rate. Moreover, the prediction speed of ACF 

object detector is around 2 frames per second by using a single 

CPU which is a promising method to be embedded in a real-

time locust detection system. Tuning the parameters of ACF 

object detector is a painful job. The parameters are optimized 

by a heuristic way. In the future, the more advanced parameter 

optimization methods (such as Bayesian optimization) will be 

combined into the framework. Moreover, other classifiers will 

be tested and 𝑘-fold cross validation will be used. In addition,

fast modern deep learning methods (e.g. MobileNets) may be 

utilized to enhance the performance of object detector. 

Figure 4.  Example of locust detection 
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