
2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019 

12 

 

Abstract— This paper presents MoDSeM, a novel software

framework for spatial perception supporting teams of robots. 

MoDSeM aims to provide a semantic mapping approach able to 

represent all spatial information perceived in autonomous 

missions involving teams of field robots, and to formalize the 

development of perception software, promoting the development 

of reusable modules that can fit varied team constitutions. 

Preliminary experiments took place in simulation, using a 

100x100x100m simulated map to demonstrate our work-in-

progress prototype’s ability to receive, store and retrieve spatial 
information. Results show the appropriateness of ROS and 

OpenVDB as back-ends for supporting the prototype, achieving 

promising performance in all aspects of the task and supporting 

future developments. 

I. INTRODUCTION

The Modular Framework for Distributed Semantic Mapping 

(MoDSeM) aims to provide a semantic mapping approach 

able to represent all spatial information perceived in 

autonomous missions involving teams of field robots, such as 

those operating in precision forestry missions, aggregating the 

knowledge of all agents into a unified, cohesive 

representation. It also aims to formalize and normalize the 

development of new perception software, promoting the 

implementation of modular and reusable software that can be 

easily swapped according to the sensory abilities of each 

individual platform. This text presents an overview of 

MoDSeM and of some preliminary experiments using a work-

in-progress implementation that evaluate the main design 

choices in a simulated forestry environment. 

This article is structured as follows: the remainder of this 

section focuses on highlighting the paper's contributions, 

Section II presents the MoDSeM architecture, Section III 

presents our preliminary experiments and results, which are 

discussed in Section IV. Lastly, Section V presents our 

conclusions and future work. 

Contribution and Related Work 

MoDSeM's originality and contribution to the field lies in its 

focus on improving the technology readiness level (TRL) [1] 

of cooperative perception techniques, and on enabling them to 
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operate in a coordinated, flexible and seamless manner. In 

fact, while works in perception are abundant, including 

probabilistic approaches [2] and works on several sub-

problems of field robotics, including tree detection [3], 

crop/weed discrimination [4] or detection of plant disease [5]; 

very few of these techniques are available as easily-reusable 

software packages. These software packages, which include 

for instance mapping and localization techniques [6]1,[7]2, 

among others, constitute the most accessible way of testing 

perception techniques in the field, in conditions as close to real 

operation as possible. However, these packages represent only 

a small subset of the substantial body of work in perception, 

and are traditionally quite behind the state of the art. MoDSeM 

aims to tackle this issue by providing the means to integrate 

the output of these techniques, to make them usable by 

heterogeneous teams of robots, and by providing guidelines 

and formalisms for the development and integration of 

Perception Modules. 

Software frameworks for robots have been developed for 

generic robots, such as ROS [8], YARP [9] or GenoM3 [10], 

and also specifically for agriculture and forestry robots [11]. 

These frameworks focus on improving software portability, 

and introduce some standards3 on the basic common features 

and assumptions of the various modules. However, these 

frameworks do not tackle the particular issues of perception 

systems, such as achieving a common representation of the 

world with varying sensor input, or the storage and retrieval 

of this information, both current and in the past. Past efforts 

also do not define a development methodology to produce 
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Figure 14: An overview of MoDSeM. Sensors produce signals, which are 

passed to independent perception modules. Percepts obtained by these 

modules are aggregated in a Semantic Map, containing layers for different 

kinds of information. 
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portable perception software, one of the main long-term goals 

of MoDSeM. To the best of our knowledge, MoDSeM is the 

first attempt at such a system and methodology applied 

directly to the problem of perception. 

II. MODSEM

A. Overview

The framework is split into three main blocks (Fig. 1): the 

Sensors, which provide raw signals; the Perception Modules 

(PMs) which take these signals and produce percepts; the 

Semantic Map (SM), containing a unified view of the state of 

the workspace/world which can be used by any agent in the 

team to make decisions or to coordinate with others. 

Each PM is expected to be decoupled from other modules, 

depending only on the available sensors and on the SM itself, 

ensuring that they become interchangeable, plug-and-play 

elements of the system, able to be swapped at will, depending 

on the computational power and available sensors on each 

robot. This allows for the employment of PMs in different 

systems without the need to re-design the global 

representation. 

The semantic map works as a global output of the system, 

split into two components: the Layered Voxel Grid (LVG) and 

the Parametric Percept Models (PPM). Each layer of the LVG 

is itself a voxel grid containing information on a specific 

aspect of the world, such as occupancy or task-relevance (e.g. 

the presence of certain kinds of vegetation). The combination 

of these layers represents the state of the world as perceived 

by the robot team; individually, they provide insight that may 

be relevant on a particular aspect of the mission. PMs 

can contribute to different layers of the LVG, e.g. with a 

people detector contributing to a people occupancy layer and 

a mapping technique contributing to an occupancy layer. The 

PPM complements the LVG, representing entities without 

volume, e.g. robot poses or human joint configurations. 

MoDSeM aims to introduce non-linearity in the traditional 

data flow used in perception (Figs. 2 and 3), allowing PMs to 

access current and past percepts through the SM: PMs are 

allowed to use the SM and previous version of it as input. 

Indeed, some PMs are expected to use solely the SM as input; 

e.g. a traversability detector could estimate the traversability

of the map using only occupancy and vegetation information.

Thus, a history of SMs is kept during operation, 

which could quickly make its storage infeasible. This can be 

mitigated, for instance, by storing the successive differences 

in time between the PMs as they are generated, as done in 

video compression algorithms and source control systems, or 

by intelligently choosing which snapshots of the SM should 

be saved, using information-theoretic techniques. 

B. Instantiation Examples

Traditionally, multi-robot perception is achieved in one of two 

ways: by propagating raw signals from each robot to a 

centralized perception server, which then replies with 

percepts; or by endowing each team member with perceptive 

abilities, as well as the ability to decide when percepts should 

be propagated among the team. Both of these approaches are 

valid in their own conditions, and it is important that 

MoDSeM support all of these perceptual topologies, as they 

allow for greater implementation flexibility. 

Distributed perception is the appropriate technique 

when bandwidth is limited, when robots have heterogeneous 

needs and capabilities, and when each individual robot can be 

endowed with perception abilities that fit its needs. Fig. 4 

illustrates an overview of MoDSeM implemented on a robotic 

team performing distributed perception, with each team 

member implementing the full architecture. In this case, each 

agent contains additional specialized PMs that are used to fuse 

Figure 2: Traditional perception techniques implement a linear flow 

from sensors to percepts; signals are processed and percepts are 

output. 

Figure 3: MoDSeM's non-linear perception pipeline: Perception Modules 

(PMs) are allowed to access previous versions of the Semantic Map (SM). 

Figure 4: An overview of a robot team operating with MoDSeM. Each team 

member has its own sensors, perception modules and semantic map. These 

are shared with the rest of the team as needed, with each robot being able to 

receive signals and SM layers from other robots, fusing them to achieve a 

unified SM. 

Figure 5: Different topologies for multi-robot perception using MoDSeM. 

Top: a perception server, which receives information and SM layers from the 

team and executes the most computationally expensive perception modules. 

Bottom: a data gatherer agent, which collects and sends data for processing in 

other agents. 
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information received from other agents, to achieve consensus, 

and selection procedures, which select information for sharing 

with other agents. Specific PMs in each robot can then fuse 

these representations, achieving consensus in representation 

and allowing all robots to plan with the same information. 

These can be implemented using the same formalism as 

regular PMs, with no necessary particularity, and would only 

depend on the SM itself to function. 

Centralized perception can be useful when the robots 

in the team carry much less processing power than the 

necessary perception modules and when the communication 

infrastructure is always available and can support the 

necessary bandwidth. Fig.5 illustrates the usage of MoDSeM 

on a centralized topology, with a data gatherer collecting and 

selecting signals, which are then sent to a centralized server 

for processing and dissemination. 

Other topologies can be achieved with the framework 

by mixing-and-matching the necessary components, such as 

PMs and sensors and their configurations, to achieve different 

use cases. For instance, a hybrid approach can be used with 

heterogeneous teams, when for example one of the robots is 

significantly more powerful in computational terms than other 

team members, which in turn can therefore unload part of their 

perceptual load to this team mate, while still executing basic 

PMs. 

III. EXPERIMENTS AND RESULTS

Tests were conducted with the goal of assessing the 

appropriateness of OpenVDB [12] and ROS4 as back-end 

modules for MoDSeM, exploring two main functions: data 

insertion into the semantic map, and data retrieval from the 

semantic map. These constitute the two main operations that 

the semantic map server is expected to perform during 

runtime, and should operate efficiently enough to allow real 

time operation. To this end, a 100-by-100-by-100 meter map 

was generated in simulation, at a resolution of 5cm/voxel (Fig. 

65), containing three semantic layers with a total of 18 million 

voxels. The map was sent piece-by-piece over ROS to the 

semantic map server, operating on OpenVDB, simulating the 

operation of a mapping node that advances through the terrain 

4 http://www.ros.org 

and iteratively updates the global map. At each update, the 

server was asked for the retrieval of the same portion of the 

map, testing its ability to deliver data. The whole experimental 

procedure took place on a computer running Ubuntu 16.04, 

equipped with an Intel Core i7-7700 and 16GiB of RAM. 

Fig. 7 illustrates the time it took to update the map as 

a function of the size, in occupied points, of the respective 

update. A linear trend is observable in the data: the update time 

of the map is predictable given the size of the update, and can 

be accounted for. In the worst-case scenario, the update 

procedure took around 0.3 seconds, for an update of 160,000 

points. 

Fig. 8 illustrates the performance of the semantic 

map server when retrieving a subsection of the map.  We can 

observe no undesirable relationship between the voxel 

structure of the original grid and the time it takes to retrieve 

the grid; for a constant sub-grid volume, the retrieval time is 

almost constant. 

Fig. 9 illustrates the semantic map server's usage of 

memory as the experiment progresses. We can observe that 

memory usage grows linearly with the size of the updates that 

5 Aliasing artifacts are caused by downsampling applied for 

visualization. It is not possible to represent the map's near-20-

million voxels on rviz. 

Figure 6: An illustration of the semantic map used in these tests. Green voxels 

represent the terrain, brown voxels represent trees and red voxels represent 

dry shrubbery. 
Figure 7: Time needed to update the map as a function of the size of the 

update, in occupied points. The clear outlier corresponds to the very first 

insertion of the map, wherein the received grid itself is used. 

Figure 8: Time taken to retrieve a sub-map (or sub-grid) as a function of the 

number of voxels contained in the sub-map. 
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are received, not with the mapped volume itself. This means 

that the map is capable of storing information independently 

of the volume mapped, which is one of the greatest advantages 

of tree-based maps such as OpenVDB or Octomap [6]. 

IV. DISCUSSION

Generally, the current results are promising. Map update and 

retrieval speeds are fast enough for our application: updates 

up to 160,000 voxels, equivalent to a completely full 3m3 

volume, can be processed at 3 to 4Hz. Given that a time 

complexity below O(n) was unlikely , this is a positive result: 

the update time of the map is easily predictable given the size 

of the update, and measures can be taken to account for it. 

As seen in Section III, system performance is 

acceptable for the worst-case scenario. An update as large as 

those described therein is a relatively unlikely event; it may 

correspond to an update to the map produced by a mapping 

node or eventually to a bulk update from another perception 

node which has produced a large calculation. It is unlikely that 

such updates would be produced frequently, or at a high 

enough frequency to overload the server. This work 

demonstrates that basic functionality is possible, and that 

MoDSeM's future development should involve OpenVDB and 

ROS: they seem able to support the operation of the semantic 

map server and can provide a stable framework for future 

development. 

6 http://stop.ingeniarius.pt/ 

V. CONCLUSION AND FUTURE WORK

This paper presents the design and the ongoing development 

of MoDSeM, a software framework for spatial perception 

supporting teams of robots. Preliminary experiments confirm 

the appropriateness of our design choices. 

We present only a preliminary study of the functionality that 

is being designed and implemented. It will now be extended 

in several ways, namely to further evaluate the framework's 

limitations, and to apply it in real use cases in several current 

research projects. Additional testing will be conducted in 

semi-realistic scenarios, involving several robots, to develop 

the inter-robot communication and data transmission facilities 

that will propagate SM layers across team mates. MoDSeM 

will then be implemented in teams of patrolling robots6 for 

surveillance and inspection, allowing the team of robots to 

synchronize and fuse perceptual information, promoting 

coordinated action. In later follow-up work, MoDSeM will 

also support the perceptual mechanisms of heterogeneous 

teams of robots for automated forestry tasks [13]7. 
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Figure 9: Evolution of memory usage as updates are received by the server. 

(Top) represents the total memory usage of the map; (middle) illustrates the 

volume, in cubic voxels, of the map; (bottom) shows the update times of 

non-zero updates, as well as their size in points. 


	UKRAS19-Proceedings-Final_Part16
	UKRAS19-Proceedings-Final_Part17
	UKRAS19-Proceedings-Final_Part18
	UKRAS19-Proceedings-Final_Part19



