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 

Abstract — Herein, the use of reinforcement learning and

pattern generators for balancing a bipedal robot, is described. 

SARAH (Silent Agile Robust Autonomous Host) is an 

underactuated robot designed by Motion Robotics LTD and aims 

to become an everyday bipedal robot that has fast, humanlike 

response. By utilizing V-Rep simulator, a simulated model of the 

robot was constructed and controlled with pattern generators. 

Then, those pattern generators were optimized by using 

reinforcement learning and a neutral advantage function agent. 

The training results are presented through graphs with respect 

to training steps, to show how the parameters converge to the 

optimum values. 

I. INTRODUCTION

Bipedal robots are becoming more sophisticated over the 
years however, their structural design remains the same. The 
majority of bipedal robots demonstrate a human-like 
mechanical structure which was established from the early 70s 
[1]. A full humanoid, like ASIMO of Honda [2] and ATLAS 
of Boston Dynamics [3], usually consists of at least 23 Degrees 
of Freedom (DoF) that can be categorized as: 3 for the head, 3 
for each shoulder joint, 1 for each elbow joint, 2 for each hip 
joint, 1 for each knee joint and 3 for each foot joint. They can 
further be grouped into the upper part (head, shoulders, elbow 
– 11 DoFs) and the lower part (hip, knee, foot – 12 DoFs).

Our research focuses on the lower part of the bipedal robot
because it is more challenging compared with the upper part 
which has similar structure as industrial robots and is well 
studied and optimized. In this paper, we designed an 
underactuated bipedal host which has 6 actuators and 10 DoFs 
[4]. The control of the robot was achieved by combining 
Central Pattern Generators (CPG) and Reinforced Learning 
(RL). As it was demonstrated, CPG are used by humans [5] and 
they are suitable for bipedal robots [6]. Reinforced Learning on 
the other hand, proved suitable for real-time applications [7]. 

The robot model was implemented in V-Rep Simulator [8] 
and the basic characteristics of the simulation were evaluated 
with the physical robot. Combining the simulator with 
reinforced learning, two set of parameters of the robot were 
optimized. The first set was to optimize to increase the number 
of steps per minute, in respect of the overall movement in the 
transverse plane. The second set of parameters was to adjust 
small movements in hip joints to modify flexion/extension and 
abduction/adduction during steps. These movements are 
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aiming to keep a stable position, in the transverse plane, for as 
long as possible.  

II. MECHANICAL STRUCTURE

 SARAH has four underactuated DoFs, two on each foot. 
These joints were responsible for the lateral movement of the 
forefoot and the hindfoot parts. They were free to rotate but 
limited by the shank, where they were touching on a pressure 
sensor, and a shoe was holding them from moving downwards 
thus, they could flex inside the shoe like a human foot. Figure 
1 demonstrates the actual ankle joint with and without the shoe. 

As shown in Figure 2, the physical model of the developed 
bipedal robot can be divided into three main groups. The first 
includes the main top compartment with the right and left hips, 
as well as four actuators for the adduction/abduction and 
flexion/extension of the robot. The other two main groups are 
the two legs, each one having one actuator (“knee”) and two 
passive joints on the foot. The total weight of the robot was 
30kg, with each group weighing 10kg. These specifications 
were also considered in the simulated model in order to achieve 
realistic dynamics.  

III. CONTROLLING ARCHITECTURE

Balancing was provided from a CPG using information 
from an Inertial Measurement Unit (IMU) that was fixed in the 
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Figure 15: Ankle joints of SARAH with and without shoe. 
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center of the top compartment. From that, 6 axis IMU, only 4 
pieces of information were used as the angular rate on the x and 
z axes were not necessary (for this stage of balancing). The Y-
axis angular rate shows the speed at which the robot will jump 
from one leg to the other. From the x-y-z axes accelerations, a 
quantitively postural angle of the robot can be determined by 
dividing the correspondent (to the angle that was examined) 
axis with the total acceleration. Additionally, the four pressure 
sensors that are located on the ankle, were giving information 
if the forefoot and the hindfoot were on the ground.  With the 
addition of the feedback from the actuators (six signals), the 
observations from the simulation sum up to 16. Figure 3 shows 
the complete CPG schematic with the equations for each 
condition and the actions that take place after each condition. 

Additionally, in Figure 3 two sets of variables are noted, 
the P1-5 and the V1-4. These variables were extracted after two 

consecutive reinforced learning trainings using keras-rl library 
[9] and the normalized advantage function (NAF Agent) [10].
Under this agent, the calculation of the Q-value variant took
place in a continuous form with experience replays. Model-free
reinforcement learning with continuous outputs, uses raw
inputs from the system (e.g. raw sensor data) and outputs a float
number as a result in all the outputs. Those outputs can be used
raw, in the inputs of the real/simulated system. The reason for
two consecutive trainings and not one is based on the future
exploration of the balancing problem. The first training was
focusing more on the response speed than the stability and the
second training was the opposite.

The models that were used as actor (mu_model), critic 
(V_model) and Q-maximizer model (L_model) were simple 
neural networks and the interaction between them achieved a 
complex non-linear result. The V_model had three layers of 
neurons with each layer having neurons equal to the square of 
the number of the observation signals (256). The L_model had 
four layers of 5 times the number of the observation signal (80) 
and the mu_model had four layers too, but with the number of 
observation signals (16). The layers had a sigmoid as an 
activation function and the output layer of each model had a 
linear activation to rectify the decisions in a continues space. 
Because, heuristically, it was observed that the parameters 
must be positive, the actor’s rectification bias was initialized at 
1, instead of 0. 

The main difference between the reinforced learning and 
the supervised learning is the way that the data were collected, 
as the first one is collecting the data during training while the 
latter is using a pre-collected dataset. Another difference is 
that, reinforced learning needs to define a cost (if it is negative) 
or a reward (if it is positive) function based on the performance 
of the robot in the simulator or real world. This function will 
act as the “correct option” and the reinforced learning will 
maximize it. For the training of SARAH’s model, the equation 
(2) was used as a reward function. Its value was calculated in
every step of the simulation and their summation wes presented
as a reward in the end of each simulation.R = ሺͲ.ͷ − ܿ௫ሻ ∙ ሺͲ.ͷ − ܿ௬ሻ ∙ ʹ−ሺ௙−ଷሻ4 ∙ ܿ௭ (2) 

Figure 16: SARAH's simulated model in V-Rep with annotations. 

(a) top groups, (b) right leg, (c) left leg

Figure 17: Central Pattern Generator for balancing the bipedal robot. P1-5 were the parameters that were trained during the first training. 

V1-4 were the parameters that were trained during the second training. Colored rectangles represent condition’s statements and colorless

(or having =) represents actions. LFP, LBP, RFP and RBP are the forefoot and hindfoot pressure sensors of the left and right foot, 

respectively. stable_Y and stable_X are the lowpass accelerations in y and x axes. total is the squared acceleration in the three axes.  
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where, R is the reward, f is the number of steps per second and 
cx/cy/cz is the position of the top compartment in 3 dimensions 
x-y-z, respectively.

First Training

During the first training the model was initialized standing 
upwards and stable. After one second, the CPG started moving 
the legs based on the parameters P1-5, which were the trained 
parameters. Meanwhile the movement of abduction/ adduction 
and extension/flexion was locked, requiring no training. The 
parameters were set in the beginning of each simulation, once 
by the outputs of the neural network and were not changed 
during the simulation. The aim of the first training was to find 
the best parameters for the CPG in order to have similar steps 
per second as a human (3-5 steps per second) but without 
sacrificing a lot of the planar stability. 

The output of each model was 5, 1 and 15 for the actor, 
critic and Q-maximizer, respectively. The Q-maximizer 
outputs formed a 5x5 lower triangular matrix (L) and it was 
used for calculating the Q-value of the network based on the 
equations (3). The number of the outputs matches the number 
of parameters that must be trained. Qሺiሻ = Vሺiሻ − ͳʹ ሺu − MሺiሻሻሺL ∙ LTሻሺu − MሺiሻሻT (3) 

where, Q(i) is the Q-value, V(i) is the output from V_model, u 
is the predicted actions with the addition of a random 
exploration value [1x5 matrix], M(i) is the predicted action 
[1x5 matrix] and L is the outputs of the L_model in a lower 
triangular matrix like equation (Ͷ).

Lሺiሻ = [
Lͳ Ͳ Ͳ Ͳ ͲLʹ L͵ Ͳ Ͳ ͲLͶ Lͷ L͸ Ͳ ͲL͹ Lͺ Lͻ LͳͲ ͲLͳͳ Lͳʹ Lͳ͵ LͳͶ Lͳͷ] (Ͷ)

Second Training 

The second training was similar to the first one, as it was 
starting with the robot standing stable for one second. 
However, after that point, a random planar force was acted on 
the top compartment and had an amplitude up to 100 N. This 
force was displacing the robot by a few centimeters and during 
the steps, the robot was trained to return to its initial position 
by changing the parameters V1-4 in the CPG. 

The network was the same as with the first training, except 
that the outputs of the actor and Q-maximizer were 4 and 10, 
respectively. The reward function stayed the same as the 
amount of step per second was not changing drastically from 
V1-4 parameters. Also, both trainings were stopped under three 
criterions. First, criterion was that the simulation will not stop 
after 30 second even if they performed well. The other criterion 
was a virtual 3D limit of movements by 25 cm. When those 
limits were reached, the simulation was stopped. Last criterion 
was if the parameters did not make the robot oscillate in the 
first 5 seconds, then again, the simulation was stopped. The 
criterions were implemented thus, the simulations that will 
produce low reward, will end sooner and reserve resources. 

IV. RESULTS AND DISCUSSION

First Training 

Figure 4 shows the performance of the NAF agent finding 
the parameters P1-5 to balance SARAH in V-Rep simulator. 
The objective of the training was to increase the number of 
steps per second without sacrificing the stability of the robot. 
It was observed that all parameters, P1-5, must be positive in 
order to have a stable and continues response. If the parameters 
were negative, small changes resulted in unexpected results. 

Examining the parameters and how they changed in respect 
with the performance, the key parameters were determined. 
Figure 5 demonstrates the changes of parameters P1-P5 during 
training. Figure 3 shows that, the parameters P1-P3 were 
responsible mostly for the performance of the simulation, as 
the other two parameters were increasing rapidly but the 
reward was not. Those results were confirmed by manually 
varying those variables, after the training and showed that they 
do not change the reward/performance proportionally. Those 
parameters control the timing of each step so, if they were too 
big, the step cycle never finishes and if they were to small, the 
step finishes abnormally fast. Alternating the feet on the floor, 
was making the robot rotate in Y-axis and the faster the steps, 
the bigger the rotation speed. The parameters P1 and P3 were 
responsible to limit this rotation and they stabilized around 0.4 

Figure 18: Reward and Frequency during First Training. 

Figure 19: Parameter (P1-5) results during First Training. 
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and 0.1, respectively. The variable P2 was responsible for the 
amount of tilt, sidewise, and was stabilized at 1.3 which can be 
translated to ~7.5o. 

Second Training 

During the second training, the parameters V1-4 were 
trained to minimize the movements in the planar plane. Those 
variables were adjusting the angles for the abduction/adduction 
and flexion/extension based on X and Y axes accelerations, 
respectively. Figure 6 demonstrates the performance of the 
simulation and the movements in X-Y axes as the training got 
trained. The performance, as reward, was based on the same 
equation as before (equation (2)). However, because the steps 
per second were limited by the parameters P1-5, the reward 
was controlled mainly by the position of the top compartment. 

Figure 7 presents the parameters V1-4 and it is noteworthy 
that, the variables V1 and V3 were more important than V2 and 
V4. The important variables were multiplying the acceleration 
of the X-axis and Y-axis, respectively, since they were 
changing the sensitivity of the respond as they were linear to 
the response. The variables V2 and V4, were responsible for 
the constant value that may be needed to keep the center of 
mass in the center of the robot. The randomness of the force 
added a great difficulty in the training algorithm. The variables 

did not show a logical relation with the reward as V1 was 
following V4 trends and V2 was following V3 trends.  

V. CONCLUSION

The use of neural networks with CPG in bipedal robots for 

balancing is not new [11], however the use of NN to optimize 

values of a CPG is novel. Utilizing reinforcement learning, the 

network is optimized to provide a parameter set solution that 

will replace certain variables in the CPG in order to balance 

SARAH. Reinforcement learning with NAF agent, offers 

exploration of the parameters and the ability of learning 

through experience. 

The CPG used to drive the robot, works independently from 

the NN. The CPG increases the response rate of the system, as 

they can be executed faster than a neural network as each cycle 

is executed in few processor cycles but NN needs few cycles 

for each layer. However, the use of CPG with NN that we 

propose, includes the ability of learning from the robot as the 

NN can be trained offline from events while the robot was 

used. Afterwards, using NN trained classifiers, new CPG 

parameters can be pushed through and update movements 

appropriately based on real time sensors. 

Future work of this project includes, the finalization of 

SARAH and to integrate the balance with this technique as 

well as to train it from its own experience, online. Finally, the 

algorithm will be tested in different terrains, with different 

slopes, friction or texture.  
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Figure 21: Parameter (V1-4) results during Second Training. 
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