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Abstract— This paper presents results from experiments

aimed at creating a framework for designing functionally 

resilient multi-robot systems. This is achieved by embedding 

functional information in motion planning algorithms and 

linking it to the robot’s morphology. Two specific use case

scenarios are discussed, one pertaining to multi-arm co-operative 

tasks and the other involving multi-vehicle tasks. Initial 

experimental results for each use case scenario are presented. 

The results indicate that the speed of response in the event of a 

disaster is dependent on the noise in the environment, processing 

power and intelligent mapping of functions to morphologies. 

I. INTRODUCTION

A team of robots or robotic manipulators performing tasks 
jointly either co-operatively or competitively have come to be 
defined as multi-robot systems. These systems can be thought 
of as complex engineered systems as they tend to display 
complex behavior, have a life of their own and can be hard to 
interpret analytically [1]. As such, there is often limited 
understanding regarding how such systems will function and 
behave in the real world and this can lead to operational 
difficulties in the form of cost overruns, delays in project 
completion and delivery, unplanned repair and maintenance 
and total system failure [2].  

The design of multi-robot systems to meet performance 
specifications given by measures of predictability, reliability, 
stability, controllability and precision requires enabling 
resilience in these systems as they function under myriad 
environmental conditions and perform different tasks. 
Resilience can be defined as the ability of a system to 
autonomously recover when subjected to change, especially 
from disastrous events [3]. This, in turn, requires addressing 
the twin attributes of reliability and restoration [4]. While 
current robotic systems may exhibit resilience to a certain 
degree, systematic studies that discuss and enable functional 
resilience are lacking in literature and have been limited to very 
specific topics such as security [5] and coordination [6]. 

This work seeks to create an initial framework for 
functional resilience in multi-robot systems by taking an 
experimental approach where the requirements for resilience 
are derived from specific experimental scenarios involving 
change and disaster. These requirements are then used to 
embed intelligence within the software algorithms in the multi-
robot system that enable the multi-robot system to function in 
a resilient manner. 
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II. METHODOLOGY

Functional resilience was explored in the context of two types 

of multi-robot systems: i) multi-arm and ii) multi-vehicle. 

These are discussed below. 

A. Multi-arm experiment

A multi-arm experiment was set up on a Baxter
collaborative robot. The task given to the robot was to pick and 
place pegs and rings on a Bytronic Industrial Control Trainer 
(ICT3) conveyor belt. The trainer is designed to assemble the 
pegs and rings. The pegs are made of aluminium alloy while 
the rings are made of white-colored polymeric material. The 
pegs and rings are placed in separate red and green bins 
respectively, as shown in Fig. 22. The task given to the left arm 
was to place the pegs on the conveyor, while the right arm was 
required to place the rings on the conveyor. Pick and place 
operation on the Baxter can be performed using visual servoing 
using cameras on the robot. A specific demo example on golf 
balls was calibrated for use in this study. 

Fig. 22. Multi-arm experiment showing (a) entire setup (b) feeder chutes of 

Bytronic ICT3 (c) bins with conveyor belt 

The following scenarios for functional resilience were 
conceived: 

 If the left arm fails, then the right arm takes over the
entire pick and place operation for both pegs and rings

 If the right arm fails, then the left arm takes over the
entire pick and place operation for both pegs and rings
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 If both arms fail, then an error message is displayed
stating that both arms are dysfunctional

 If any one or both of the arms are functional again, the
robot returns back to working with one or both arms

An algorithm was written to realize the above scenario that 
enables functional resilience by embedding intelligence into 
the code for the pick and place of pegs and rings. 

B. Multi-vehicle experiment

A multi-vehicle experiment was set up using a
commercially available unmanned ground vehicle (UGV) 
platform, Diddyborg together with an unmanned aerial vehicle 
(UAV) platform, CoDrone Pro, as shown in Fig. 23. A search 
and inspect experiment was designed where the UAV-UGV 
combination is sent out to autonomously search an area for a 
red ball and once the ball is found, the drone takes off to inspect 
the area. The Diddyborg is equipped with a Raspberry Pi 3 
model B+ board and camera. The autonomous following of the 
ball is achieved using a Python code, adapted from a demo 
example, that uses the OpenCV library to process the images 
from the Raspberry Pi camera and detect objects of a specific 
color and shape. A disaster scenario is introduced in the shape 
of a blue obstacle that appears suddenly in the field of view of 
the UGV. Resilience is to be achieved so that the obstacle can 
be identified in real time, the multi-robot system stops a certain 
distance before the obstacle and the drone takes off to inspect 
the area following which a new path is charted for achieving 
the task of finding the red ball. 

Fig. 23. Multi-vehicle experiment with an UAV and UGV performing a 

search and inspect operation 

III. RESULTS

This section discusses i) how the scenarios for functional 
resilience were embedded in the code of the robots and ii) the 
robustness of the algorithms embedding the resilience. 

A. Enabling functional resilience in multi-arm experiment

A careful survey of programming techniques that would be
suitable for enabling resilience led to the conclusion the key to 
enabling functional resilience is to be able to run multiple 
processes in parallel. For instance, while a robot is carrying out 
a certain task using a function or a set of functions called from 
the main function, if a simultaneous check could be run using 
another function whether all the manipulating arms are 
functional by processing sensor data, then if it found that one 
of the arms is failing, the other manipulating arms could take 
over the task or a remedial measure be put in place for the 
faulty arm. Having identified multi-threading as the technique 
to be used to enable resilience, the next step was to artificially 
inject one of the four scenarios identified in Section II.A. This 

was done by using a mouse click. A click of the left mouse 
button was meant to indicate that the left arm was non-
functional while a click of the right mouse button made the 
right arm non-functional. The pseudo code that enables 
resilient operation is listed below –
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A series of timed tests were performed with a stop watch to 
assess the robustness of the multi-threading algorithm. Results 
from one such test are presented below in Table I. 

TABLE I. STATISTICS FROM DISASTER EVENTS IN MULTI-ARM PICK AND 

PLACE USING A MULTI-THREADING ALGORITHM 

Total time for experiment 5min 28 s 

Time between events 16.4 s 

Number of disaster events 21 

Number of events with 0 subsequent error  2 

Number of events with 1 subsequent error 17 

Number of events with 2 subsequent errors 2 

It may be noted that every pick and place event has a delay 

time of 10 s as mentioned in the pseudo code. This delay time 

is the time it takes to perform the operation. When a disaster 

event occurs, a pick and place event is already occurring and 

the thread performing it is running. Hence, even after the 

disaster event occurs, the operation is shown to being done and 

hence, an error occurs. This explains the 17 errors for the 21 

disaster events. However, if two disaster events occur in close 

proximity of one another and negate the effect of each other 

(e.g. power supply fluctuations), then no error may be 

recorded. This explains the 2 cases with no subsequent errors. 

Another possibility is that the same thread is started twice due 

to such fast fluctuations leading to 2 subsequent errors. 

B. Enabling functional resilience in multi-vehicle

experiment

The first step was to pair the drone and the raspberry pi and 

fly it. Although the bluetooth chip on the pi (Bluetooth 4.2 

chip Cypress CYW43455) communicates with the bluetooth 

chip on the drone (bluetooth 4.0 BLE), it was found that only 

pairing is feasible and flying the drone could not be enabled. 

Hence, the bluetooth board from CoDrone Pro had to be 

carried onboard and plugged in to the USB port of the pi. Next, 

the CoDrone library was imported within the diddyborg 

Python code, creating an instance of the drone, pairing it, and 

then having the drone take off after the diddyborg arrived at 

the red ball. The diddyborg has a thread where it prints a 

message “Close enough” on reaching the ball and this is where 
the drone take off event was created. A youtube video of the 

successful experiment is available at https://youtu.be/-

Lo_2z0fhMg. The code was then modified to be able to detect 

blue objects in addition to red object, treat the blue objects as 

obstacle and inspect them. The pseudo code for the same is 

given below –

Algorithm: Multi-vehicle resilience using color-space based rules 

Input: Streaming video of area being navigated 

Output: Search and inspect red balls and blue obstacles 

1. Instantiate an object of type CoDrone as “drone”
2. # Pair drone and bluetooth module connected to Raspberry Pi by 

specifying USB port

3. drone.pair (drone.Nearest, USB port connected to Bluetooth module) 

4. Blur image obtained from raspberry pi using the function ‘medianBlur’
5. Change the image definition from RGB to HSV colorspace using the 

function ‘cvtColor’
6. Find the portion of the image in the red and blue channels using the 

function ‘inRange’ between numpy arrays 

7. Use the function ‘findContours’ to segment the image into red contours
and blue contours 

8. Find the center of each set of contours and the area

9. Determine distance to blue obstacle and red ball using the centers and area

10. if (distance of obstacle to robot < distance of ball to robot) 

11. if (obstacle is in the path to the red ball) 

12. navigate close to obstacle 

13. fly drone to inspect obstacle 

14.  else if (obstacle in not in the path to the red ball) 

15.  navigate to red ball 

16.  fly drone to inspect red ball 

17. else if (distance of obstacle to robot > distance of ball to robot) 

18.  navigate to red ball 

19.  fly drone to inspect red ball

The algorithm used to estimate the distance of an object from 

the robot is based on an area calculation. The speeds of the 

motors on the robot are adjusted according to the location of 

the centers in two axes in the plane of the camera of the robot 

and the area calculation. While the threshold values for the red 

ball worked for the demo diddyborg code available from the 

manufacturer, the use of the drone necessitated an upgrade 

from Python 2.7 to Python 3 as the drone’s libraries are written 
in Python 3. This meant the older Open CV libraries no longer 

worked and needed a fresh install. When this was done, the 

area thresholds for objects needed changing. Fig. 24 shows the 

new calibration that was done for blue objects. While earlier, 

the ball following code for the diddyborg worked well with a 

value of 10, 000 for autoMaxArea corresponding to a ball 65 

mm in diameter, the new value for the same was re-adjusted 

to 1, 000 based on the below calibration. This produced 

satisfactory results for identifying both obstacles and balls.   

Fig. 24. Area of a blue object as a function of distance from camera; 

the red line shows a polynomial fit through the measured data points 

IV. DISCUSSION

A discussion on the interpretation of the results from the 
multi-arm and multi-vehicle experiments is presented below. 
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A. Discussion on multi-arm resilience experiment

The introduction of a disaster scenario during the
functioning of the multi-arm bin-picking experiment revealed 
that threads need to be handled with efficiency for the system 
to be resilient. Else, two situations may occur: i) delay in task 
allocation to the functional arm, ii) repetition of activities by a 
specific arm due to multiple instances of the same function 
running.  

The first situation is hard to remedy as the non-functional 
arm may come in the way of the functional arm and an active 
collision avoidance algorithm between the two arms is 
necessary. Further, the thread for the non-functional arm needs 
to be interrupted immediately. Human intervention may be 
essential for the functional arm to take over the tasks or an 
intelligent algorithm to re-position the non-functional arm 
needs to be in place, which may be hard to realize, especially 
if the disaster scenario involves a power supply issue to the 
motors operating the non-functional arm. 

The second situation can be remedied by introducing a 
waiting time between activities where the thread sleeps. Hence, 
a new pick and place activity does not start until the disaster 
scenario has kicked in. However, this will reduce the 
productivity from the multi-arm tasks and hence, was not 
pursued within this work. 

A few hardware related issues need to be kept in mind 
before a fully resilient operation can be illustrated. One of these 
is being able to perform visual servoing on different types of 
objects with accuracy. These include the effects of color, size 
and shape, especially in different ambient conditions. 
Secondly, the placement of pegs and rings in the slots on the 
conveyor belt is not an easy task, and the positioning accuracy 
of the Baxter needs to be improved for the task to be performed 
precisely every time. 

B. Discussion on multi-vehicle resilience experiment

The multi-vehicle experiment required the robot to identify
new obstacles in its path as they emerge and inspect them. 
While an active collision avoidance algorithm can enable this, 
doing this based on color is significantly more challenging. 
Additionally, several scenarios for path planning can be 
envisaged as shown in the Fig. 4 below. 

For the drone and the diddyborg to continuously operate as 
a team autonomously, the diddyborg must carry the drone with 

it at all times. This requires the drone to land on top of the 
diddyborg, after performing its search and inspect operation. 
This is easy to do using a joystick, however, achieving this 
autonomously requires the drone to run additional algorithms 
for detecting the diddyborg and making a stable landing on its 
top plate. 

V. CONCLUSIONS

Functional resilience was explored experimentally in the 

context of multi-arm and multi-vehicle scenarios. The use of 

multi-threading in enabling resilience was outlined and 

algorithms for achieving this were successfully tested. Key 

challenges in achieving resilience in autonomous co-operative 

tasks were discussed, which provide the motivation for further 

research. Improvements in hardware and improved efficiency 

in the underlying algorithms can help create resilient multi-

robot systems of the future.   
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