
2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

28

Abstract— This paper presents results from experiments

aimed at creating a framework for designing functionally

resilient multi-robot systems. This is achieved by embedding

functional information in motion planning algorithms and

linking it to the robot’s morphology. Two specific use case

scenarios are discussed, one pertaining to multi-arm co-operative

tasks and the other involving multi-vehicle tasks. Initial

experimental results for each use case scenario are presented.

The results indicate that the speed of response in the event of a

disaster is dependent on the noise in the environment, processing

power and intelligent mapping of functions to morphologies.

I. INTRODUCTION

A team of robots or robotic manipulators performing tasks
jointly either co-operatively or competitively have come to be
defined as multi-robot systems. These systems can be thought
of as complex engineered systems as they tend to display
complex behavior, have a life of their own and can be hard to
interpret analytically [1]. As such, there is often limited
understanding regarding how such systems will function and
behave in the real world and this can lead to operational
difficulties in the form of cost overruns, delays in project
completion and delivery, unplanned repair and maintenance
and total system failure [2].

The design of multi-robot systems to meet performance
specifications given by measures of predictability, reliability,
stability, controllability and precision requires enabling
resilience in these systems as they function under myriad
environmental conditions and perform different tasks.
Resilience can be defined as the ability of a system to
autonomously recover when subjected to change, especially
from disastrous events [3]. This, in turn, requires addressing
the twin attributes of reliability and restoration [4]. While
current robotic systems may exhibit resilience to a certain
degree, systematic studies that discuss and enable functional
resilience are lacking in literature and have been limited to very
specific topics such as security [5] and coordination [6].

This work seeks to create an initial framework for
functional resilience in multi-robot systems by taking an
experimental approach where the requirements for resilience
are derived from specific experimental scenarios involving
change and disaster. These requirements are then used to
embed intelligence within the software algorithms in the multi-
robot system that enable the multi-robot system to function in
a resilient manner.

*Research is supported by Engineering Complexity Resilience (ENCORE)

Network+ grant.

A.K.Behera is with the Centre for Intelligent Autonomous Manufacturing

Systems (i-AMS), Queen’s University Belfast, Belfast BT9 5AH (phone:
+44 28 9097 4769 e-mail: a.behera@qub.ac.uk).

II. METHODOLOGY

Functional resilience was explored in the context of two types

of multi-robot systems: i) multi-arm and ii) multi-vehicle.

These are discussed below.

A. Multi-arm experiment

A multi-arm experiment was set up on a Baxter
collaborative robot. The task given to the robot was to pick and
place pegs and rings on a Bytronic Industrial Control Trainer
(ICT3) conveyor belt. The trainer is designed to assemble the
pegs and rings. The pegs are made of aluminium alloy while
the rings are made of white-colored polymeric material. The
pegs and rings are placed in separate red and green bins
respectively, as shown in Fig. 22. The task given to the left arm
was to place the pegs on the conveyor, while the right arm was
required to place the rings on the conveyor. Pick and place
operation on the Baxter can be performed using visual servoing
using cameras on the robot. A specific demo example on golf
balls was calibrated for use in this study.

Fig. 22. Multi-arm experiment showing (a) entire setup (b) feeder chutes of

Bytronic ICT3 (c) bins with conveyor belt

The following scenarios for functional resilience were
conceived:

 If the left arm fails, then the right arm takes over the
entire pick and place operation for both pegs and rings

 If the right arm fails, then the left arm takes over the
entire pick and place operation for both pegs and rings

Enabling functional resilience in autonomous multi-arm and multi-
vehicle cooperative tasks

Amar Kumar Behera, Member, UKRAS

DOI 10.31256/UKRAS19.8

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

29

 If both arms fail, then an error message is displayed
stating that both arms are dysfunctional

 If any one or both of the arms are functional again, the
robot returns back to working with one or both arms

An algorithm was written to realize the above scenario that
enables functional resilience by embedding intelligence into
the code for the pick and place of pegs and rings.

B. Multi-vehicle experiment

A multi-vehicle experiment was set up using a
commercially available unmanned ground vehicle (UGV)
platform, Diddyborg together with an unmanned aerial vehicle
(UAV) platform, CoDrone Pro, as shown in Fig. 23. A search
and inspect experiment was designed where the UAV-UGV
combination is sent out to autonomously search an area for a
red ball and once the ball is found, the drone takes off to inspect
the area. The Diddyborg is equipped with a Raspberry Pi 3
model B+ board and camera. The autonomous following of the
ball is achieved using a Python code, adapted from a demo
example, that uses the OpenCV library to process the images
from the Raspberry Pi camera and detect objects of a specific
color and shape. A disaster scenario is introduced in the shape
of a blue obstacle that appears suddenly in the field of view of
the UGV. Resilience is to be achieved so that the obstacle can
be identified in real time, the multi-robot system stops a certain
distance before the obstacle and the drone takes off to inspect
the area following which a new path is charted for achieving
the task of finding the red ball.

Fig. 23. Multi-vehicle experiment with an UAV and UGV performing a

search and inspect operation

III. RESULTS

This section discusses i) how the scenarios for functional
resilience were embedded in the code of the robots and ii) the
robustness of the algorithms embedding the resilience.

A. Enabling functional resilience in multi-arm experiment

A careful survey of programming techniques that would be
suitable for enabling resilience led to the conclusion the key to
enabling functional resilience is to be able to run multiple
processes in parallel. For instance, while a robot is carrying out
a certain task using a function or a set of functions called from
the main function, if a simultaneous check could be run using
another function whether all the manipulating arms are
functional by processing sensor data, then if it found that one
of the arms is failing, the other manipulating arms could take
over the task or a remedial measure be put in place for the
faulty arm. Having identified multi-threading as the technique
to be used to enable resilience, the next step was to artificially
inject one of the four scenarios identified in Section II.A. This

was done by using a mouse click. A click of the left mouse
button was meant to indicate that the left arm was non-
functional while a click of the right mouse button made the
right arm non-functional. The pseudo code that enables
resilient operation is listed below –

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

30

A series of timed tests were performed with a stop watch to
assess the robustness of the multi-threading algorithm. Results
from one such test are presented below in Table I.

TABLE I. STATISTICS FROM DISASTER EVENTS IN MULTI-ARM PICK AND

PLACE USING A MULTI-THREADING ALGORITHM

Total time for experiment 5min 28 s

Time between events 16.4 s

Number of disaster events 21

Number of events with 0 subsequent error 2

Number of events with 1 subsequent error 17

Number of events with 2 subsequent errors 2

It may be noted that every pick and place event has a delay

time of 10 s as mentioned in the pseudo code. This delay time

is the time it takes to perform the operation. When a disaster

event occurs, a pick and place event is already occurring and

the thread performing it is running. Hence, even after the

disaster event occurs, the operation is shown to being done and

hence, an error occurs. This explains the 17 errors for the 21

disaster events. However, if two disaster events occur in close

proximity of one another and negate the effect of each other

(e.g. power supply fluctuations), then no error may be

recorded. This explains the 2 cases with no subsequent errors.

Another possibility is that the same thread is started twice due

to such fast fluctuations leading to 2 subsequent errors.

B. Enabling functional resilience in multi-vehicle

experiment

The first step was to pair the drone and the raspberry pi and

fly it. Although the bluetooth chip on the pi (Bluetooth 4.2

chip Cypress CYW43455) communicates with the bluetooth

chip on the drone (bluetooth 4.0 BLE), it was found that only

pairing is feasible and flying the drone could not be enabled.

Hence, the bluetooth board from CoDrone Pro had to be

carried onboard and plugged in to the USB port of the pi. Next,

the CoDrone library was imported within the diddyborg

Python code, creating an instance of the drone, pairing it, and

then having the drone take off after the diddyborg arrived at

the red ball. The diddyborg has a thread where it prints a

message “Close enough” on reaching the ball and this is where
the drone take off event was created. A youtube video of the

successful experiment is available at https://youtu.be/-

Lo_2z0fhMg. The code was then modified to be able to detect

blue objects in addition to red object, treat the blue objects as

obstacle and inspect them. The pseudo code for the same is

given below –

Algorithm: Multi-vehicle resilience using color-space based rules

Input: Streaming video of area being navigated

Output: Search and inspect red balls and blue obstacles

1. Instantiate an object of type CoDrone as “drone”
2. # Pair drone and bluetooth module connected to Raspberry Pi by

specifying USB port

3. drone.pair (drone.Nearest, USB port connected to Bluetooth module)

4. Blur image obtained from raspberry pi using the function ‘medianBlur’
5. Change the image definition from RGB to HSV colorspace using the

function ‘cvtColor’
6. Find the portion of the image in the red and blue channels using the

function ‘inRange’ between numpy arrays

7. Use the function ‘findContours’ to segment the image into red contours
and blue contours

8. Find the center of each set of contours and the area

9. Determine distance to blue obstacle and red ball using the centers and area

10. if (distance of obstacle to robot < distance of ball to robot)

11. if (obstacle is in the path to the red ball)

12. navigate close to obstacle

13. fly drone to inspect obstacle

14. else if (obstacle in not in the path to the red ball)

15. navigate to red ball

16. fly drone to inspect red ball

17. else if (distance of obstacle to robot > distance of ball to robot)

18. navigate to red ball

19. fly drone to inspect red ball

The algorithm used to estimate the distance of an object from

the robot is based on an area calculation. The speeds of the

motors on the robot are adjusted according to the location of

the centers in two axes in the plane of the camera of the robot

and the area calculation. While the threshold values for the red

ball worked for the demo diddyborg code available from the

manufacturer, the use of the drone necessitated an upgrade

from Python 2.7 to Python 3 as the drone’s libraries are written
in Python 3. This meant the older Open CV libraries no longer

worked and needed a fresh install. When this was done, the

area thresholds for objects needed changing. Fig. 24 shows the

new calibration that was done for blue objects. While earlier,

the ball following code for the diddyborg worked well with a

value of 10, 000 for autoMaxArea corresponding to a ball 65

mm in diameter, the new value for the same was re-adjusted

to 1, 000 based on the below calibration. This produced

satisfactory results for identifying both obstacles and balls.

Fig. 24. Area of a blue object as a function of distance from camera;

the red line shows a polynomial fit through the measured data points

IV. DISCUSSION

A discussion on the interpretation of the results from the
multi-arm and multi-vehicle experiments is presented below.

2nd UK-RAS ROBOTICS AND AUTONOMOUS SYSTEMS CONFERENCE, Loughborough, 2019

31

A. Discussion on multi-arm resilience experiment

The introduction of a disaster scenario during the
functioning of the multi-arm bin-picking experiment revealed
that threads need to be handled with efficiency for the system
to be resilient. Else, two situations may occur: i) delay in task
allocation to the functional arm, ii) repetition of activities by a
specific arm due to multiple instances of the same function
running.

The first situation is hard to remedy as the non-functional
arm may come in the way of the functional arm and an active
collision avoidance algorithm between the two arms is
necessary. Further, the thread for the non-functional arm needs
to be interrupted immediately. Human intervention may be
essential for the functional arm to take over the tasks or an
intelligent algorithm to re-position the non-functional arm
needs to be in place, which may be hard to realize, especially
if the disaster scenario involves a power supply issue to the
motors operating the non-functional arm.

The second situation can be remedied by introducing a
waiting time between activities where the thread sleeps. Hence,
a new pick and place activity does not start until the disaster
scenario has kicked in. However, this will reduce the
productivity from the multi-arm tasks and hence, was not
pursued within this work.

A few hardware related issues need to be kept in mind
before a fully resilient operation can be illustrated. One of these
is being able to perform visual servoing on different types of
objects with accuracy. These include the effects of color, size
and shape, especially in different ambient conditions.
Secondly, the placement of pegs and rings in the slots on the
conveyor belt is not an easy task, and the positioning accuracy
of the Baxter needs to be improved for the task to be performed
precisely every time.

B. Discussion on multi-vehicle resilience experiment

The multi-vehicle experiment required the robot to identify
new obstacles in its path as they emerge and inspect them.
While an active collision avoidance algorithm can enable this,
doing this based on color is significantly more challenging.
Additionally, several scenarios for path planning can be
envisaged as shown in the Fig. 4 below.

For the drone and the diddyborg to continuously operate as
a team autonomously, the diddyborg must carry the drone with

it at all times. This requires the drone to land on top of the
diddyborg, after performing its search and inspect operation.
This is easy to do using a joystick, however, achieving this
autonomously requires the drone to run additional algorithms
for detecting the diddyborg and making a stable landing on its
top plate.

V. CONCLUSIONS

Functional resilience was explored experimentally in the

context of multi-arm and multi-vehicle scenarios. The use of

multi-threading in enabling resilience was outlined and

algorithms for achieving this were successfully tested. Key

challenges in achieving resilience in autonomous co-operative

tasks were discussed, which provide the motivation for further

research. Improvements in hardware and improved efficiency

in the underlying algorithms can help create resilient multi-

robot systems of the future.

ACKNOWLEDGMENTS

The author wishes to acknowledge the contributions of

Conor Burrows and Sarka Klimkova in building the robots and

setup of experiments.

REFERENCES

[1] A.A. Mina, D. Braha, Y. Bar-Yam, Complex engineered systems: A new

paradigm, Springer, 2006.

[2] C. Ivory, N. Alderman, Can project management learn anything from

studies of failure in complex systems?, Project Management Journal, 36

(2005) 5-16.

[3] R.J.T. Klein, R.J. Nicholls, F. Thomalla, Resilience to natural hazards:

How useful is this concept?, Global Environmental Change Part B:

Environmental Hazards, 5 (2003) 35-45.

[4] B.D. Youn, C. Hu, P. Wang, Resilience-driven system design of complex

engineered systems, Journal of Mechanical Design, 133 (2011) 101011.

[5] S. Gil, S. Kumar, M. Mazumder, D. Katabi, D. Rus, Guaranteeing spoof-

resilient multi-robot networks, Autonomous Robots, 41 (2017) 1383-1400.

[6] M.B. Dias, M. Zinck, R. Zlot, A. Stentz, Robust multirobot coordination

in dynamic environments, in: IEEE International Conference on Robotics and

Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, 2004, pp. 3435-3442.

Fig. 25. Scenarios for obstacle emergence and associated path planning strategies a) no obstacle b) obstacle in line of sight of ball c)

ball in front of obstacle d) only obstacle and no ball e) both ball and obstacle visible to the multi-vehicle team

	UKRAS19-Proceedings-Final_Part32
	UKRAS19-Proceedings-Final_Part33
	UKRAS19-Proceedings-Final_Part34
	UKRAS19-Proceedings-Final_Part35

