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Abstract—Essential to agricultural robot deployment in farms
are accurate topological maps, which are manually created in
current systems. In this work we present a novel approach
to automatically generate a topological map along crop rows
from aerials images for the deployment of agricultural mobile
robots. We evaluate our system in a digital twin of a farm
environment using real-world textures and physical simulation,
and also demonstrate its applicability to aerial images of a real
farm.

Index Terms—Agri-robotics, Topological mapping, Mobile
Robot Navigation

I. INTRODUCTION

The deployment of fully autonomous mobile platforms
to real-world farms is fast approaching, aiming to solve
challenges from a growing population, labour shortage, and
pressure to reduce environmental impact [1]. The deployment
of fully autonomous mobile platforms to real-world farms
requires solving a range of technical challenges. First and
foremost safe and precise navigation across the farm environ-
ment. In this work, we present a novel approach to automatic
topological map creation from aerial views of a field to guide
the mobile robots along crop rows.

Thanks to recent advances in mobile robotics, manipulation
and computer vision, modern agricultural robots can be de-
ployed in various agricultural environments and are able to
complete tasks such as crop scouting, pest and weed control,
or harvesting [2]. Automated mapping of farm and field
environments is an essential stage towards their commerciali-
sation [1]. Currently, predefined topological maps are used to
navigate up and down crop rows to deliver crop treatments [3].
Farms are constantly changing, crop rows and farm structure
will vary over time requiring new topological maps which
are typically created manually [4]. Our proposed solution
addresses that problem by automating the topological map
creation. Although automated waypoint creation from a map is
a well-studied problem, it has not been applied in agricultural
applications. Current crop row segmentation algorithms often
rely on assumptions of straight, parallel, equally spaced crop
rows, using e.g. Hough transforms [5]. These perform well on
straight rows but fail when the crop rows are curved, which
often occurs in fields with trees, pylons or ditches, or when
the crop rows change direction in irregularly shaped fields [6].
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Current solutions also commonly use sensors positioned close
to the ground and thus focus on local guidance [6], [7].

The key contributions of this paper are a novel method
of crop row detection and topological mapping from aerial
images, which takes into account common crop row variations
found in fields and evaluation of the method on both real world
fields and simulated digital twins.

II. METHODOLOGY

The proposed approach uses aerial images of a farm, such
as hi-resolution UAV or satellite images. In this work we use
real images of a Lincolnshire farm captured by UAV, as well as
a digital twin of a farm environment simulated in Gazebo [8].
The ground plane of this environment is covered with textures,
consisting of real images of soil and rows of different types of
crop, collected from a camera mounted on a mobile platform
deployed at the real farm facilities of the University of Lincoln.

To avoid harm to the crop, mobile robots should travel
across the field along the centre line of crop rows only. For our
approach to automate deployment in new fields, a topological
map is created by converting the captured aerial image into a
set of waypoints, connected with traversable edges.

First, we find the locations of crops in the image by colour-
based segmentation. We then determine the principal angle of
parallel crop rows visible in the segmented binary image. We
construct a set of oriented graphs (0 to 180◦) resulting from
the sum of intensities across interval lines perpendicular to
the orientation (Fig. 1). The principal angle α is determined
as perpendicular to the graph with the highest mean peak.
A dense set of waypoints is then placed on the centre of
crop clusters along the intensity profile lines perpendicular
to the principal crop row direction a (Fig. 2, left). The
waypoints are clustered into individual rows and ordered by
their distance along each row, to produce a continuous safe
route for travelling along each separate crop row. Additionally,
a safe turning point is appended to the start and end of each
crop row, parallel to α (Fig. 2, centre).
Next, we remove redundant waypoints from the dense set by
omitting waypoints for which the deviation from the previous
direction of travel is only within some permitted perpendic-
ular distance, l. The result is a sparser set containing only
waypoints in locations where the direction of travel changes
by more than l (Fig. 2, right). This down-sampling procedure
introduces a sparsity-accuracy trade-off and majorly influences
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Fig. 1: Perpendicular lines drawn on the binary image at angle 0◦ (left) and 90◦ (right), along with their oriented graphs of
intensity sums.

Fig. 2: Left: Placement of waypoints (red) on peak clusters,
Centre: dense waypoints sorted into individual rows, Right: a
sparse variant of the same topological map.

the performance of the finished topological map. This trade-off
is evaluated in Sec. III.

III. EVALUATION

A. Experimental Setup

The quality of the topological map was assessed by its
coverage, measured as the proportion of the area in which
crops grow (as manually annotated), that has successfully been
surveyed by a simulated Thorvald robot [9] after it visited
every way point on the topological map once. We report results
for three test scenarios consisting of rectangular fields with
different row crops (basil, lettuce, and onions), and one set
of non-uniform rows with gentle and severe bends simulating
situations where there are environmental obstacles present in
the field. Additionally, we also applied the method to an aerial
image taken by UAV of a real Lincolnshire farm1 (see Fig.
4 and Fig. 5) growing winter wheat for validation of our
approach.

1courtesy of Jonathan Trotter and SAGA Robotics

Fig. 3: Coverage in four scenarios dependent on the maxi-
mum permitted perpendicular deviation l from previous travel
direction.

B. Results

The proposed algorithm deals well with variability in crop
placement and curvature within crop rows. For straight crop
rows (see Onions in Fig. 3), even very sparse maps achieve
near optimal coverage. The approach also translates well to
real-world images (Fig. 4). However our algorithm’s limita-
tions become apparent when the algorithm is applied to a
larger, more irregularly shaped field, in which the general
direction of crop rows changes significantly (Fig. 5). The
principle crop row angle found across the entire image is only
suitable for part of the image. The algorithm fails to pick up
on the crop rows on the left side.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel topological mapping algorithm, which
is robust to curvature within single crop rows. We also demon-
strated its applicability to real-world examples. However, this
algorithm is presented as a baseline for future development.
To map large fields (Fig. 5), we propose to repeatedly apply
the algorithm in a hierarchical quadtree procedure, repeatedly
partitioning the image and dynamically increasing the resolu-
tion in uncertain areas, thus evaluating the principal angles
accurately for subsections of the field. In future work this
system should be extended to create complete semantic maps
of entire farm environments, enabling efficient automated fleet
deployment for the next generation of agricultural robots.

Fig. 4: Dense (left) and sparse (right) topological map gener-
ated from an aerial image of a real farm of wheat crops.

Fig. 5: The algorithm applied to a real world scenario with
changes in crop row direction (Composite image).
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