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Abstract—In this paper, a grounding framework is proposed
that combines unsupervised and supervised grounding by extend-
ing an unsupervised grounding model with a mechanism to learn
from explicit human teaching. To investigate whether explicit
teaching improves the sample efficiency of the original model,
both models are evaluated through an interaction experiment
between a human tutor and a robot in which synonymous shape,
color, and action words are grounded through geometric object
characteristics, color histograms, and kinematic joint features.
The results show that explicit teaching improves the sample
efficiency of the unsupervised baseline model.

Index Terms—language grounding, cross-situational learning,
sample efficiency, human-robot interaction

I. INTRODUCTION

The need for robots that are able to understand natural lan-
guage instructions is growing due to an increasing number of
service robots that are employed in human-centered environ-
ments. To this end, connections between words and percepts
need to be created through grounding because language only
has meaning, if it is linked to the physical world [1].
Previous studies that investigated grounding employed either
unsupervised [2]–[4] or supervised [5], [6] approaches. The
former have the advantage that no human tutor is required for
grounding, however, they require a large number of situations
to learn the correct grounding, i.e. they are less sample
efficient, and are often also less accurate than supervised
approaches. In comparison, the latter are often more accurate
and can already learn the correct mappings from a very small
number of situations, however, they do not work in the absence
of a human tutor.
In this paper, both approaches are combined by extending
a recently proposed unsupervised cross-situational learning
based grounding framework [7], [8] to learn from explicit
human teaching, if available. The main aim is to investigate
whether this extension increases the model’s sample efficiency,
i.e. whether it reduces the number of interactions required until
the model obtains the correct mappings between words and
percepts.
The rest of this paper is structured as follows: Section (II)
describes the extended grounding framework. The experimen-
tal design and obtained results are described in Sections (III
and IV). Finally, Section (V) concludes the paper.

II. SYSTEM OVERVIEW

The used grounding system consists of the following parts:

1) 3D object segmentation system, which employs a
model based 3D point cloud segmentation approach [9]
to segment objects into point clouds. The shapes and col-
ors of objects are represented through Viewpoint Feature
Histogram [10] descriptors, which represent the object
geometries taking into consideration the viewpoints,
while ignoring scale variances, and color histograms.

2) Action recording system, which records the vertical
position of the robot’s torso, the angles of the arm
flex and wrist roll joints, the velocity of the robot’s
base and the binary state of the gripper, i.e. open or
closed, during action execution. The recorded data is
then combined into an action feature vector, which
represents the change of the recorded characteristics
between the beginning and the end of an action.

3) Percept clustering component, which converts percepts
to abstract representations through clustering to enable
the CSL algorithm to use them to ground encountered
words as proposed by [11]. The used clustering algo-
rithm is DBSCAN [12] because it does not require the
number of clusters to be specified in advance, which is
important since it cannot be assumed that the number
of percepts is known in advance. Cluster numbers were
calculated prior to grounding so that they could be
provided to the CSL algorithm. Shape, color, and action
percepts achieved mean adjusted rand scores [13] of
0.84, 1.0, and 0.99, respectively.

4) Language grounding component, which uses an ex-
tended version of the cross-situational learning based
grounding algorithm proposed by [8]. The original
grounding algorithm grounds words and phrases through
cluster numbers of percepts in an unsupervised manner
without being able to take into account any teaching
or feedback by a human tutor. Thus, in this study an
extension is proposed that provides a mechanism to learn
mappings from explicit teaching. The new mechanism
uses similar to the original one cross-situational learning
to determine the correct mappings, however, it requires
the tutor to artificially create a situation where only
one percept occurs twice and only one word is given
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to the robot, which should be grounded through that
percept (Section III). When a new mapping has been
obtained through explicit teaching, it is added to the set
of previously obtained mappings, which also includes
mappings obtained through the unsupervised grounding
algorithm during regular situations.

III. EXPERIMENTAL SETUP

During the experiment a human tutor and HSR robot [14]
interact in front of a table with one or two objects on top of it.
Interactions can be of two types. Either the human tutor asks
the robot to perform an action on the object or the tutor tries to
teach the robot the correct mapping for a shape, color, or action
word. The former interactions use the following procedure.

1) The tutor places an object on the table and the robot
determines the corresponding shape and color percepts.

2) The human tutor provides an instruction to the robot.
3) The human tutor teleoperates the robot to execute the

action provided through the instruction and the robot
determines a corresponding action percept.

4) The robot employs clustering to convert all encountered
percepts to abstract representations.

5) Words are grounded through obtained cluster numbers
by the CSL based grounding algorithm.

In contrast, situations in which the human tutor tries to teach
the robot a specific mapping follow the following procedure.

1) The human tutor places two objects, which have either
the same shape or color, on the table and the robot
determines the corresponding percepts, if the tutor tries
to teach the correct mapping for a shape or color word.
Otherwise, to teach an action word, the human tutor
places two objects on the table that have different shapes
and colors and executes the same action for both of them
so that only the action percept occurs twice.

2) The human tutor provides one single word, which refers
to the percept that occurs twice.

3) The robot creates a corresponding mapping and adds it
to the set of previously obtained mappings.

To create the 2,500 situations used in this study without
having to perform 2,500 interactions, the following procedure
is applied. First, a total of 125 interactions are performed
to record perceptual information for all combinations of em-
ployed shapes, colors, and actions, while skipping the last
two steps of the interaction procedure, i.e. steps 4 and 5.
Afterwards, all possible unique sentences are obtained by
creating all possible combinations of shape, color, and action
words. Finally, each sentence is randomly assigned one shape,
color, and action percept that correspond to the words in the
sentences, leading to overall 2,500 situations.

Each sentence has the following structure: “action the color
shape”, where action, color, and shape are replaced by one
of their corresponding words. Each action and color can be
referred to by two different words, e.g. the color green can be
referred to by “green” or “greenish”, while each shape has five
corresponding words, e.g. “latte”, “milk”, “milk tea”, “coffee”
or “espresso” for cup.

Fig. 1. Grounding results showing means and standard deviations of correct
and false mappings over all 2,500 situations encountered by the robot for 10
different sequences. The dotted lines represent the results, when the tutor
teaches the robot a correct mapping after on average every 9 situations,
while the continuous lines represent the results, when no explicit teaching
is provided.

IV. RESULTS AND DISCUSSION

The results show that teaching increases the convergence
towards the correct mappings (Figure 1). If no teaching is
provided, the algorithm requires about 850 situations to ground
all words correctly for all 10 different sequences, while it only
requires about 350 situations, when the human tutor explicitly
teaches one mapping to the robot after on average every
9 situations. Before obtaining all correct mappings teaching
also leads to a slightly higher number of correctly grounded
words. Even after all words are correctly grounded, the number
of false mappings oscillates around 2, when no teaching is
provided, because the algorithm allows words to be grounded
through several percepts to handle homonyms. In contrast, no
false mappings are obtained in case of the extended model.
If the human tutor teaches all 45 words at the beginning of
the experiment, the model learns all words after 45 situations,
assuming that all encountered percepts are correctly clustered.
While teaching all words explicitly is possible for the small
number of words used in this scenario, it would not be feasible
for a much larger number of words, which illustrates the
importance of the unsupervised grounding mechanism.

V. CONCLUSIONS AND FUTURE WORK

An unsupervised grounding model was extended to allow
it to benefit from explicit teaching by a human tutor. The
proposed model was evaluated through a human-robot
interaction experiment and compared to the original model
that does not allow explicit teaching. The results showed
that with teaching the model grounds all words on average
about 2.5 times faster than without teaching. In future work,
the model will be evaluated for longer and more complex
sentences that contain a larger number of words. Furthermore,
the influence of wrong teaching, i.e. when the tutor on purpose
or by accident provides a wrong word during teaching, will
be investigated. Finally, the model will be extended to allow
human feedback for already obtained groundings.
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