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Abstract—Faults in robot operations are risky, particularly
when robots are operating in the same environment as humans.
Early detection of such faults is necessary to prevent further
escalation and endangering human life. However, due to sensor
noise and unforeseen faults in robots, creating a model for fault
prediction is difficult. Existing supervised data-driven approaches
rely on large amounts of labelled data for detecting anomalies,
which is impractical in real applications. In this paper, we
present an unsupervised machine learning approach for this
purpose, which requires only data corresponding to the normal
operation of the robot. We demonstrate how to fuse multi-modal
information from robot motion sensors and evaluate the proposed
framework in multiple scenarios collected from a real mobile
robot.

Index Terms—anomaly detection, one-class SVM, safety

I. INTRODUCTION

Recently robots have started replacing humans in areas
where the jobs are mostly dull, repetitive or dangerous for
humans. There are many examples in areas such as agriculture,
tourism, logistics and transport where the robots have either
fully replaced or they are accompanying humans. One of
the most important concerns of operating robots in human-
environment is safety. Usually, robots use sensor data to
detect the presence of any kind of object or the human but
the noise in the sensors or its malfunctioning can cause a
disaster. Detection of these kinds of faults at the earliest is very
important before causing serious damage. In the real world,
it is not feasible to foresee all kinds of possible faults and
therefore these can not be modelled easily. Hence, a data-
driven approach to detect these kinds of anomalies is required.
We propose to use an unsupervised technique which requires
only data corresponding to the normal operation of the robot
- namely one-class support vector machine (OCSVM). The
technique was used in [1] for collision detection and collision
point localisation in a humanoid which can help the remote
operator to stop the robot in case of an emergency. In [2]
the authors used an isolation forest-based anomaly detection
method to detect the anomalous behaviour in Unmanned
Aerial Vehicles (UAVs). The contribution of our paper is to
use OCSVM for anomaly detection in the operation of a
mobile robot based on motion data coming from the robot’s
motion sensors. Furthermore, we also evaluate the proposed
framework in multiple real-world scenarios and present the
results based on data collected from a real mobile robot.
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Fig. 1. An overview of the proposed data-driven anomaly detection system.

II. METHODOLOGY

A. Overview

The general system overview is presented in Fig. 1. The
sensor data coming from the robot include odometry, relative
motor power and speed for each wheel, linear acceleration
from the IMU and issued command velocity. The frequency
of received sensor messages varies and therefore in the first
instance, these are synchronised. We up-sample all sensor
message to 100 Hz. The synchronised messages form a feature
vector of 11 values for each time instance which is an input
to the one-class SVM classifier.

B. One-class SVM

OCSVM was first proposed by Schölkopf et al. [3] as
an extension to the SVM. The method does not require the
labelled data from two classes and can be trained using the
data from one class only. OCSVM uses a kernel function
k(xi,xj) to map the features x into a high-dimensional space
φ(·) where it finds a hyper-plane w ·φ(x)− ρ = 0 separating
most of the data from the origin. This is achieved by solving
the following quadratic program that maximises the distance
between the hyper-plane and the origin:

min
w∈F,ξ∈R`,ρ∈R

1

2
‖w‖2 + 1

v`

∑
i

ξi − ρ

subject to (w · φ (xi)) ≥ ρ− ξi, ξi ≥ 0

(1)

where ν ∈ (0, 1] is an upper bound on the fraction of outliers
and a lower bound on the number of training examples used
as support vectors, ξi are slack variables and ρ is bias. By
using Lagrange techniques, the decision function can be given
by, f(x) = sgn (

∑
i αik (xi,x)− ρ), where i = 1, . . . , `

and αi are Lagrange multipliers. An incoming datum xn is
determined as the anomalous if f(xn) < 0.
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III. EXPERIMENTS

A. Experimental Setup

To test the feasibility of the proposed system, we have
designed a set of experiments with a real outdoor mobile robot
Thorvald [4]. The robot is equipped with wheel encoders,
motor controller and IMU. The data collection was performed
by driving the robot manually using a joystick and issuing
forward or backward command velocities. For validation and
evaluation, we have also devised a set of anomalous situations
by pushing the robot and recording the ground-truth using a
joystick. For the normal operation, we ran the robot at fixed
velocities of 0.15, 0.30 and 0.50 m/s (see Table I, dataset 1-
3). Dataset 4 was created by merging sets 1-3 to represent
a mix of normal behaviours. In the same way, datasets 5-
10 represent examples with anomalous cases: sets 5-6, 7-8
and 9-10 correspond to speeds of 0.15, 0.30 and 0.50 m/s
respectively.

TABLE I
DATA COLLECTED

number Samples Target Class Anomalies
1 51091 51091 0 (0.00%)
2 19045 19045 0 (0.00%)
3 11037 11037 0 (0.00%)
4 81173 81173 0 (0.00%)
5 18156 17860 296 (1.63%)
6 11940 11681 259 (2.17%)
7 10092 9792 300 (2.97%)
8 7816 7632 184 (2.35%)
9 5508 5455 53 (0.96%)
10 5096 4978 118 (2.32%)

B. Data pre-processing

In the feature vector, some of the features have a higher
order of variance than others and they might not allow the
classifier to learn from other features as expected. To avoid
that, we used standard scaler which scales each feature of the
training data such that the mean of each feature is zero and
the variance is unit. Later, these mean and variance are used
to transform the test data.

C. Hyperparameter Selection

We used radial basis function (RBF) kernel for OCSVM
thus the number of hyperparameters becomes two: 1) RBF
kernel coefficient gamma (γ) and 2) nu (ν). The performance
of OCSVM highly depends on these hyperparameters. The
value of ν was set to 0.0001 based on experiments while γ
was calculated with the equation, γ = 1/(n∗ V̂ar(X)), where
n is the number of features, V̂ar is the variance and X is the
training data.

D. Evaluation Metrics

As the datasets are highly imbalanced, Cohen’s Kappa
coefficient (κ) and specificity (S) were used to evaluate
the performance of the classifier. Cohen’s Kappa gives the
chance agreement between the observational accuracy and the
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Fig. 2. Anomaly detection: true detection (left) and false detection (right)

TABLE II
OCSVM PERFORMANCE EVALUATION

Train

Test
Velocity 0.15 0.30 0.50

S κ S κ S κ
0.15 0.32 0.38 1.00 0.01 1.00 0.01
0.30 0.01 0.02 0.31 0.39 1.00 0.01
0.50 0.01 0.02 0.04 0.08 0.33 0.33

0.15+0.30+0.50 0.13 0.22 0.07 0.12 0.38 0.3

expected accuracy [5] while specificity measures a classifier’s
ability to identify the anomalous data.

E. Results

We combined the datasets with the same velocity from Table
I and reported the results for the entire dataset in Table II. In
the latter, we can see that OCSVM performed better when the
training and testing data have the same magnitude of velocity.
Further, when the velocity in the training was higher than the
testing dataset, OCSVM missed anomalies and when it was
lower, OCSVM classified most of the samples as anomalies. It
is because as the velocity increases the variance of the features
increase and as mentioned in III-C, γ was chosen based on the
variance of the training data. For example, when the velocity
in the training was lower than the testing dataset, specificity
(S) was 1.00 but the value of κ was 0.01, which suggests that
the performance of the classifier was poor. Finally, when the
model was trained with dataset 4, it was able to predict some
anomalies in the case of 0.15 and 0.50 m/s. Fig. 2 shows an
example case of the anomaly detection system with the output,
ground truth and some of the features.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed OCSVM based anomaly detec-
tion method which uses multi-modal data fusion to detect
the anomalous operation of a robot in human accompanied
environments. We evaluated our approach in multiple real-
world scenarios.

In future, we are planning to understand more about the
temporal aspect of the data which might help the classifier to
learn better and potentially improve the classification perfor-
mance. In addition to that, we are focusing on feature selection
approaches for one-class classification.

3rd UK-RAS Conference for PhD Students & Early Career Researchers, Hosted virtually by University of Lincoln, April 2020

155



REFERENCES

[1] Narukawa, Kaname, Takahide Yoshiike, Kenta Tanaka, and Mitsuhide
Kuroda. ”Real-time collision detection based on one class SVM for safe
movement of humanoid robot.” In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pp. 791-796. IEEE,
2017.

[2] Khan, Samir, Chun Fui Liew, Takehisa Yairi, and Richard McWilliam.
”Unsupervised anomaly detection in unmanned aerial vehicles.” Applied
Soft Computing 83 (2019): 105650.

[3] Schölkopf, Bernhard, John C. Platt, John Shawe-Taylor, Alex J. Smola,
and Robert C. Williamson. ”Estimating the support of a high-dimensional
distribution.” Neural computation 13, no. 7 (2001): 1443-1471.
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